
Deep Single Table Learning

Teacher: Zheng Wang

TA: Jianwu Zheng

Social Network Analysis (NIS8023)

Shanghai Jiao Tong University

 Deep Table Learning

 Data Preprocessing

 Neural Network Structure

Outline

 1940s–1960s: Neuron Models, Perceptron.

 1969: “Perceptrons”.

 1980s–1990s: Backpropagation, Early CNNs & RNNs.

 2006: Deep Belief Networks (DBNs).

 2012: AlexNet.

 2014–Present: GANs, Transformers, BERT, GPT-3, ChatGPT.

Deep Learning Development History

What is Deep Learning?

 Deep learning can be：

 A way of learning.

 A way to get data.

 A way to combine data freely.

Everything can be vector.

Advantages of Deep Neural Networks (DNNs)

1. Performance improvements particularly for large datasets.

2. Efficiently encoding multiple data types like images along with tabular data.

3. Alleviating the need for feature engineering, which is currently a key aspect in tree-

based tabular data learning methods.

4. End-to-end models allow representation learning which enables many valuable

application scenarios including data-efficient domain adaptation.

Arik S Ö, Pfister T. Tabnet: Attentive interpretable tabular learning[C]//Proceedings

of the AAAI conference on artificial intelligence. 2021, 35(8): 6679-6687.

 A convolutional neural network is a regularized type of feedforward neural

network that learns features by itself via filter (or kernel) optimization.

Convolutional Neural Networks (CNNs)

LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J].

Proceedings of the IEEE, 1998, 86(11): 2278-2324.

An example of a CNN structure. A demonstration of CNN principles.

 TNNs refer to these deep neural network methods on tabular data

 Data preprocessing

 Neural network structure

 Training strategy

Tabular Neural Networks (TNNs)

Output

Neural network

 structure

Deep Table Learning Framework

Student Table

S_id Name Gender Age

1 Tom F 20

2 John F 21

3 Lily M 20

4 Alice M 21

5 Lucy M 19 Data Preprocessing Output

Loss from different training

Inference

Input Table

1. Low-quality training data

2. Missing or complex irregular spatial dependencies

3. Dependency on preprocessing

4. Importance of single features

Challenges in TNNs

 Deep Learning

 Data Preprocessing

 Neural Network Structure

Outline

 Empty cell imputation

1. Tabular data tends to have a lot of missing values.

2. Missing values can affect the training effect.

3. Do not change the original data distribution.

 Methods

Recap: Data Preprocessing in Traditional Methods (1)

Method Fill value

most frequent 21

sampling ~ N

0 value 0

KNN/Cluster -

Method Fill value

mean 90

median 88

mode 86

0 value 0

forward fill 86

backward fill 94

interpolation 90

Categorical features Continuous features

Age

20

21

?

21

22

Score

96

86

?

94

86

88

 Reduction and normalization

 Column-wise & Row-wise

 Min-Max Normalization, Z-Score/Standard.

 Error data repair

 Data repair is the process of fixing errors and inconsistencies in data to ensure its

accuracy and reliability for data analysis.

Recap: Data Preprocessing in Traditional Methods (II)

Student Table

S_id Name Gender Age Score

1 Tom F 20 96

2 John FA 21 86

3 Lily M ? 89

4 Alice ? 22 94

5 Lucy ? ? 80

Student Table

S_id Name Gender Age Score

1 Tom F 20 96

2 John FA 21 86

3 Lily M ? 89

4 Alice ? 22 94

5 Lucy ? ? 80

Data Preprocessing in Deep Learning (1)

Gender

F

F

M

F

F

Gender

0

0

1

0

0

Value conversion

DataFrame

ndarray

matrix

sparse_matrix

torch.Tensor

Data storage format conversion

 Data conversion:

 Convert non-numerical to numerical type values.

 Take the data from the format it was read in to data formats in deep learning platforms.

tf.Tensor

…

Data Preprocessing in Deep Learning (II)

 Dimension enhancement:

 Essentially a coding technique that requires no training.

 Transform the feature dimension from low to high.

 Why?

 Retain more information for better model utilization.

Data Preprocessing in Deep Learning (III)

Feature Stack PLE Periodic(c1=1,c2=2)

1.0 [1.0, 1.0, 1.0] [1, 0, 0] [0.0, 0.0, 1.0, 1.0]

1.25 [1.25, 1.25, 1.25] [1, 0.25 , 0] [1.0, 0.0, 0.0, -1.0]

3.75 [3.5, 3.5, 3.5] [1, 1, 1] [-1.0, 0.0, 0.0, -1.0]

PLEPeriodic Activation Function

 Methods

1. Categorical features: One-hot Encoding

2. Continuous features: Stack Encoding, Piecewise

Linear Encoding(PLE), Periodic Activation Function

Examples of different dimensionality raising methods for continuous features.

 Deep Learning Methods

 Data Preprocessing

 Neural Network Structure

 Column Pre-encoder

 Backbone Structure

Outline

 The purpose is to explore the relationship between columns.

 The relationships between columns are complex.

Intuition

Physical Examination Table

Id Name Height Weight Globulin Albumin Na+ K+

1 Tom 176 63 29.1 40.4 138.2 3.92

2 John 183 85 34.2 49.3 147.0 4.62

3 Lily 162 47 32.1 37.5 136.3 3.68

4 Alice 170 54 28.5 43.7 140.2 3.97

5 Lucy 167 53 33.4 41.2 144.3 4.25

liver healthphysique kidney health

1 Tom 176 63 29.1 40.4 138.2 3.92

Chen J, Liao K, Wan Y, et al. Danets: Deep abstract networks for tabular data classification and

regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2022, 36(4): 3930-3938.

Low

level

feature

High level

featurephysique

Middle

level

feature

 TNNs’ structure consist of two parts :

 Column type pre-encoding

 Backbone construction

Neural Network Structure

Backbone
Preprocessed data

x N

Output

Column

pre-encoding

 Mapping the scalar values of these features to high-dimensional embedding vectors,

with benefits:

 Intuition: Model the semantic information of “scalar-type” values, by introducing some

trainable mapping functions.

 Location: Often at the beginning of the backbone network.

What’s Column Type Pre-encoding?

Age

10

18

35

…

map 0.21, 0.14, 0.31, ⋯ ,

0.11, 0.25, 0.17, ⋯ ,

0.02, 0.18, 0.24, ⋯ ,
⋮

Map (via trainable NNs) a column for “scalar” to “vectors”

 Diversity of tabular data:

 There are heterogeneous data consisting of continuous, categorical, and text features.

 Heterogeneous nature of tabular feature spaces.

Why Column Type Pre-encoding? (1)

Student Table

S_id Name Gender Age Score

1 Tom F 20 89

2 John F 21 85

3 Lily M 22 92

 Problems with raw data:

1. Difficult to extract hidden information from data.

2. Difficult to capture complex relationships between features.

Why Column Type Pre-encoding? (II)

Student Table

S_id Name Gender Age Score

1 Tom F 20 89

2 John F 22 85

3 Lily M 21 92

The distribution of the six data points on the number line.

Raw values alone are difficult

to compare. Do 20 and 89

mean the same thing?

Adding the original column

name makes it easy to tell

the meaning of 20 and 89.

1. From low dimensions to high dimensions.

2. Feature space transformation.

What Does Column Type Pre-encoding Do?

For example, suppose you have a one-dimensional data distribution, and you

can either raise the dimension or transform the feature space.

Raise the dimension

Transformation

1. Enrich the semantic expressiveness of these scalar types.

2. Increase the model capacity by introducing trainable mapping function.

3. Reduce the influence of data noise.

4. Facilitate feature interaction and fusion in the backbone network.

Advantages of Column Type Pre-encoding

 Multi-layer perceptron (MLP) / Linear

 Add one or more MLPs.

 Better pre-encoding can be achieved with the help of nonlinear activation functions.

Column Type Pre-encoding (1)

3.3

1.2

5.2

0.21, 0.14, 0.31, 0.42 0.43

0.21, 0.14, 0.31, 0.42 0.43

0.21, 0.14, 0.31, 0.42 0.43

An example of using MLP pre-encoder.

 Look-up table

 Maintain a trainable coding table.

 A scalar value corresponds to a vector.

 Notes:

 Scalar ranges for different columns should not overlap.

Column Type Pre-encoding (II)

0

1

2

3

4

…

0.21, 0.14, 0.31, ⋯ ,
0.11, 0.25, 0.17, ⋯ ,

0.02, 0.18, 0.24, ⋯ ,

0.42, 0.05, 0.34, ⋯ ,
0.07, 0.27, 0.23, ⋯ ,

⋮

An example of using Look-up Table pre-encoder.

Backbone Construction

1. Tree-mimic Structure

2. Transformer-based Structure

3. Regularization-based Structure

Tree-mimic Structure

 Deepen the process using the principles of decision trees.

 The decision boundary of a decision tree can be irregular, aligning with the

heterogeneity of tabular data.

Decision Tree MLP-like

An example of a two-dimensional plane used for classification.

Tree-mimic Structure

 Main idea

1. Make decision trees differentiable for deep learning.

2. Simulate the decision tree by training different thresholds corresponding to features.

1 Differentiable

2 Simulated decision

TabNet

 Motivation

➢ Tree models such as XGBoost, LightGBM, etc. often work better than MLPS because they

handle class features, missing values, and feature interactions well.

➢ Neural networks perform poorly on structured data because:

1. Important features cannot be selected efficiently and all inputs are processed;

2. Lack of tree model decision path mechanism;

3. Difficulty explaining model decisions (black box problem)

Arik S Ö, Pfister T. Tabnet: Attentive interpretable tabular learning[C]//Proceedings

of the AAAI conference on artificial intelligence. 2021, 35(8): 6679-6687.

An example of DT-like classification

 DT-like classification using conventional DNN blocks

The core of TabNet

1. Feature Selection:

 Using the attention mechanism, each step selects the important features and ignores the

unimportant ones.

 This allows each step to focus on a different piece of information, similar to a different

path in a decision tree.

2. Decision Step:

 Each layer uses a feedforward neural network that processes the currently selected

feature.

 This is similar to how tree models learn different combinations of features at different

depths.

Structure of TabNet

Arik S Ö, Pfister T. Tabnet: Attentive interpretable tabular learning[C]//Proceedings

of the AAAI conference on artificial intelligence. 2021, 35(8): 6679-6687.

Sparse Feature Selection

Arik S Ö, Pfister T. Tabnet: Attentive interpretable tabular learning[C]//Proceedings

of the AAAI conference on artificial intelligence. 2021, 35(8): 6679-6687.

Sparse Feature Selection

 Soft feature selection with controllable sparsity in end-to-end learning.

 Employ a learnable mask 𝑀 𝑖 ∈ ℝ𝐵×𝐷.

 The masking is multiplicative 𝑀 𝑖 ∙ 𝑓, 𝑓 is feature.

• 𝑎 𝑖 − 1 is attention score

• ℎ𝑖 is a trainable function, FC+BN

• 𝛾 is a relaxation parameter, if 𝛾 = 1, a feature is used only at once

𝑀 𝑖 = sparsemax 𝑃 𝑖 − 1 ∙ ℎ𝑖 𝑎 𝑖 − 1

𝑃 𝑖 = ෑ

𝑗=1

𝑖

𝛾 − 𝑀 𝑗

Martins A, Astudillo R. From softmax to sparsemax: A sparse model of attention and multi-label

classification[C]//International conference on machine learning. PMLR, 2016: 1614-1623.

Sparse Feature Selection

 Soft feature selection with controllable sparsity in end-to-end learning.

 Employ a learnable mask 𝑀 𝑖 ∈ ℝ𝐵×𝐷

 The masking is multiplicative 𝑀 𝑖 ∙ 𝑓, 𝑓 is feature

 Add sparsity regularization in the form of entropy.

𝑀 𝑖 = sparsemax 𝑃 𝑖 − 1 ∙ ℎ𝑖 𝑎 𝑖 − 1

𝑃 𝑖 = ෑ

𝑗=1

𝑖

𝛾 − 𝑀 𝑗

Martins A, Astudillo R. From softmax to sparsemax: A sparse model of attention and multi-label

classification[C]//International conference on machine learning. PMLR, 2016: 1614-1623.

𝐿𝑠𝑝𝑎𝑟𝑠𝑒 = ෍
𝑖=1

𝑁𝑠𝑡𝑒𝑝𝑠

෍
𝑏=1

𝐵

෍
𝑗=1

𝐷 −𝑀𝑏,𝑗 𝑖 log(𝑀𝑏,𝑗 𝑖 + 𝜖)

𝑁𝑠𝑡𝑒𝑝𝑠 ∙ 𝐵

Decision Step

 Feature processing

 Split for the decision step output and information for the subsequent step

 The overall decision embedding：

[𝑑[𝑖], 𝑎[𝑖]] = 𝑓𝑖(𝑀[𝑖] · 𝑓)

𝑑𝑜𝑢𝑡 = ෍

𝑖

𝑁𝑠𝑡𝑒𝑝𝑠

𝑅𝑒𝐿𝑈(𝑑[𝑖])

𝑜𝑢𝑡 = 𝑊𝑓𝑖𝑛𝑎𝑙𝑑𝑜𝑢𝑡

Martins A, Astudillo R. From softmax to sparsemax: A sparse model of attention and multi-label

classification[C]//International conference on machine learning. PMLR, 2016: 1614-1623.

Result of Feature Importance

 The aggregate decision

contribution at i-th decision step

for the b-th sample.

 The aggregate feature importance

mask

𝜂𝑏[𝑖] = ෍

𝑐=1

𝑁𝑑

𝑅𝑒𝐿𝑈(𝑑𝑏,𝑐[𝑖])

𝑀𝑎𝑔𝑔−𝑏,𝑗 =
σ

𝑖=1

𝑁𝑠𝑡𝑒𝑝𝑠 𝜂𝑏 𝑖 𝑀𝑏,𝑗[𝑖]

σ𝑗=1
𝐷 σ

𝑖=1

𝑁𝑠𝑡𝑒𝑝𝑠 𝜂𝑏 𝑖 𝑀𝑏,𝑗[𝑖]

Martins A, Astudillo R. From softmax to sparsemax: A sparse model of attention and multi-label

classification[C]//International conference on machine learning. PMLR, 2016: 1614-1623.

Feature importance masks and the aggregate feature importance mask.

Structure of TabNet

Arik S Ö, Pfister T. Tabnet: Attentive interpretable tabular learning[C]//Proceedings

of the AAAI conference on artificial intelligence. 2021, 35(8): 6679-6687.

Neural network construction

1. Tree-mimic Structure

2. Transformer-based Structure

3. Regularization-based Structure

Transformer

 Sequence2Sequence

 language translation

 image captioning

 text summarization

 Uses self-attention mechanisms to process sequential data.

 Encoder-decoder structure

 Attention Mechanism / Multi-Head Attention

 Positional Encoding

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.

Encoder-Decoder structure

 Encoder:

 Takes input token(word) by token and generates a set of numbers which is called

context vector

 Decoder:

 Takes context vector, process on it and generates output token by token

Encoder Decoder
context

vector
This is a cat. It

likes so cute.

这是一只猫。他
看起来很可爱

An example of Encoder-Decoder structure

context

vector c

Encoder-Decoder structure

 Take unidirectional RNN as an example:

This is a cat. It likes so cute.

这是一只猫。它看起来很可爱

𝑥1 𝑥2 𝑥𝑇𝑥

ො𝑦1 ො𝑦2
ො𝑦𝑇𝑦

Encoder Decoder

<START>

ℎ𝑡 = 𝑓 ℎ𝑡−1, 𝑥𝑡

𝑐 = 𝑞({ℎ1,···, ℎ𝑇𝑥
})

ℎ1 ℎ2 ℎ𝑇𝑥 𝑠1 𝑠2 𝑠𝑇𝑦

𝑝 𝑦𝑡 𝑦1,···, 𝑦𝑡−1 , 𝑐 = 𝑔 𝑦𝑡−1, 𝑠𝑡 , 𝑐

Encoder-Decoder structure

 Encoder:

 A stack of 𝑁=6 identical layers, each consisting of two sub-layers.

1. Multi-head self-attention mechanism

2. Position-wise fully connected feed-forward network

 Decoder:

 A stack of 𝑁=6 identical layers, each consisting of three sub-layers.

1. Masked multi-head self-attention mechanism

2. Multi-head self-attention mechanism

3. Position-wise fully connected feed-forward network

 residual connection + layer normalization

Encoder-Decoder structure

 Problem in Encoder-Decoder structure

 Encoder: capturing complete context of a large sentence within a fixed-length context vector.

 Decoder: in some cases the decoder only needs a particular word or group of words.

This is a cat. It likes so cute.

这是一只猫。
它看起来很可爱

ො𝑦1 ො𝑦2 ො𝑦𝑇𝑦

context

vector c

𝑥1 𝑥2 𝑥𝑇𝑥

Encoder

<START>

ℎ1 ℎ2 ℎ𝑇𝑥 𝑠1 𝑠2 𝑠𝑇𝑦

What’s Attention Mechanism?

 An attention function can be described as mapping a query and a set of key-value pairs

to an output, where the query, keys, values, and output are all vectors.

a

a

a

a

a

×

×

×

×

×

query

Key 1

Key 2

Key 3

Key 4

Key 5

value 1

value 2

value 3

value 4

value 5

+ output
So

ftm
ax

attention

score function

a()

Bahdanau D, Cho K H, Bengio Y. Neural machine translation by jointly learning to align and

translate[C]//3rd International Conference on Learning Representations, ICLR 2015. 2015.

Why is the Attention Mechanism Useful?

 Selectively focus on relevant parts.

 Capture long-range dependencies.

 Improved interpretability.

How does the Attention Mechanism Work?

 No longer use only the last output context vector.

 Use an attention mechanism for all output states.

 𝑐𝑖 represents the context vector aggregated by the attention

mechanism. 𝑒𝑖𝑗 represents attention scores.

This

𝑥1 𝑥2 𝑥𝑇𝑥

ො𝑦1

<START>

is …

这

+

ℎ1 ℎ2 ℎ𝑇𝑥

𝑠1 𝑠2

𝑝 𝑦𝑡 𝑦1,···, 𝑦𝑡−1 , 𝑐 = 𝑔 𝑦𝑡−1, 𝑠𝑡 , 𝑐

𝑝 𝑦𝑡 𝑦1,···, 𝑦𝑡−1 , 𝑐𝑖 = 𝑔 𝑦𝑡−1, 𝑠𝑡 , 𝑐𝑖

𝑐𝑖 = ෍

𝑗=1

𝑇𝑥

𝛼𝑖𝑗ℎ𝑗 𝑎𝑖𝑗 =
exp(𝑒𝑖𝑗)

σ
𝑘=1
𝑇𝑥 exp(𝑒𝑖𝑘)

𝑒𝑖𝑗 = 𝑎(𝑠𝑖−1, ℎ𝑗)

Various Attention Mechanism

 Additive attention

 The dimensions of q, k, v can be different.

 It's like a multi-layer perceptron.

 Dot-product (multiplicative) attention

 Can be implemented using highly optimized matrix multiplication code.

𝑎 𝑞, 𝑘 = 𝑊𝑣
𝑇 tanh 𝑊𝑞𝑞 + 𝑊𝑘𝑘 ∈ ℝ

𝑊𝑞 ∈ ℝℎ×𝑞, 𝑊𝑞 ∈ ℝℎ×𝑘, 𝑊𝑣 ∈ ℝℎ

𝑎 𝑞, 𝑘 = 𝑞𝑇𝑘 ∈ ℝ

Scaled Dot-Product Attention

 Input:

1. Q: queries of dimension 𝑑𝑘

2. K: keys of dimension 𝑑𝑘

3. V: values of dimension 𝑑𝑣

 Output:

1. a weighted sum of the values

𝑑𝑘 ↑ Dot product ↑ Gradient ↓

Multi-Head Attention

 Linearly project the queries, keys and values h times with different, learned linear

projections to 𝑑𝑘, 𝑑𝑘 and 𝑑𝑣 dimensions.

 Perform the attention function in parallel.

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 𝑄, 𝐾, 𝑉, ℎ = 𝐿𝑖𝑛𝑒𝑎𝑟 𝐶𝑜𝑛𝑐𝑎𝑡 ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄𝑊𝑖
𝑄

, 𝐾𝑊𝑖
𝐾 , 𝑉𝑊𝑖

𝑉

𝑊𝑖
𝑄

∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙 , 𝐾𝑊𝑖
𝐾 , 𝑉𝑊𝑖

𝑉

An Example of Multi-Head Attention

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J].

Advances in neural information processing systems, 2017, 30.

 Multi-head attention learn information from different representation subspaces at

different positions.

Two different heads from the encoder self-attention at layer 5 of 6.

 The position and order of words are crucial to the meaning of a sentence.

 To make use of the order of the sequence.

 Sinusoidal Positional Encoding:

 Composed of sine and cosine functions of different frequencies.

Positional Encoding

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos(
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

)

𝑃𝐸 𝑝𝑜𝑠,2𝑖 = sin(
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

)

dimension low high

frequency 1
1

10000

wavelength 2𝜋 10000 ∙ 2𝜋

Sinusoidal Positional Encoding:

 The sine and cosine function is used to represent the absolute position, and the

relative position is obtained by multiplying the two.

➢ For any fixed offset k, 𝑃𝐸 𝑝𝑜𝑠+𝑘,2𝑖 can be represented as a linear function of 𝑃𝐸 𝑝𝑜𝑠,2𝑖 .

➢ Compute the inner product of 𝑃𝐸𝑝𝑜𝑠 and 𝑃𝐸𝑝𝑜𝑠+𝑘 to determine their relative position.

𝑃𝐸 𝑝𝑜𝑠+𝑘,2𝑖

𝑃𝐸 𝑝𝑜𝑠+𝑘,2𝑖+1
=

𝑢 𝑣
−𝑣 𝑢

𝑃𝐸 𝑝𝑜𝑠,2𝑖

𝑃𝐸 𝑝𝑜𝑠,2𝑖+1
, ቊ

𝑢 = cos(𝜔𝑖 ∙ 𝑘)
𝑣 = sin(𝜔𝑖 ∙ 𝑘)

, 𝜔𝑖 =
1

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

𝑃𝐸𝑝𝑜𝑠 ∙ 𝑃𝐸𝑝𝑜𝑠+𝑘 = ෍

𝑖=0

𝑑
2

−1

sin 𝜔𝑖𝑝𝑜𝑠 ∙ sin 𝜔𝑖 𝑝𝑜𝑠 + 𝑘 + cos 𝜔𝑖𝑝𝑜𝑠 ∙ cos 𝜔𝑖 𝑝𝑜𝑠 + 𝑘

= ෍

𝑖=0

𝑑
2−1

cos 𝜔𝑖𝑘

An Example of Relative Position

 Calculate the relative position of a hundred tokens, that is, the inner product between

the two position codes.

The greater the value,

the closer the distance.

An Example of Positional Encoding

 Plot the coding situation of each location.

𝑑𝑚𝑜𝑑𝑒𝑙 = 512

𝑑𝑚𝑜𝑑𝑒𝑙 = 256

Why can Transformer be used for tabular data?

 TNN’s core purpose (Recap):

 To explore the relationship between columns.

 Sequence and tabular data

[token] [token] [token]

[token]

…

…
Between tokens

Sequence

Tabular data

Analogy between sequential data and tabular data.

…

…

Transformer on Tabular Data

 Intuition

 The amount of attention that one column pays to another is the importance of the

relationship between the two columns.

 Main idea

 Calculate the attention between columns.

 The attention score is the weight of the column over the other levels of relevance.

𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑐ol = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑄, 𝐾, 𝑉 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑋𝑊𝑄, 𝑋𝑊𝐾 , 𝑋𝑊𝑉

𝑋 is input embeddings.

FT-Transformer

 Feature Tokenizer + Transformer

 Transforms all features (categorical and numerical) to embeddings.

 A stack of Transformer layers.

Feature Tokenizer

 Transforms the input features 𝑥 to embeddings 𝑇 ∈ ℝ𝑘×𝑑 .

 continuous features:

 𝑓𝑗
(𝑛𝑢𝑚)

 is implemented as the element-wise

multiplication with the vector 𝑊𝑗
(𝑛𝑢𝑚)

 ∈ ℝ𝑑

 categorical features:

 𝑓𝑗
(𝑐𝑎𝑡)

 is implemented as the lookup table

𝑊𝑗
(𝑐𝑎𝑡)

 ∈ ℝ𝑆𝑗×𝑑

Feature Tokenizer

An Example of Single Sample.

1 Tom F 20

1

Tom

F

20

𝑇 ∈ ℝ𝑘×𝑑𝑒

𝑄 ∈ ℝ𝑘×𝑑

𝐾 ∈ ℝ𝑘×𝑑

𝑉 ∈ ℝ𝑘×𝑑

Feature

Tokenizer

𝑥 ∈ ℝ𝑘×1

×

×

×

×

𝑎 ∈ ℝ𝑘×𝑘

𝑎1,1

𝑎1,2

𝑎1,3

𝑎1,4

The attention of the first column

to the other columns, that is, how

closely the first column is related

to the other columns.

Softmax

+

×

×

×

×
𝑜𝑢𝑡𝑝𝑢𝑡 ∈ ℝ𝑘×𝑑

𝑎𝑤𝑒𝑖𝑔ℎ𝑡 ∈ ℝ𝑘×𝑘

𝑎𝑤𝑒𝑖𝑔ℎ𝑡𝑉

Different colors represent

different columns.

An Example of Single Sample with CLS.

1 Tom F 20

1

Tom

F

20

𝑇 ∈ ℝ(𝑘+1)×𝑑𝑒

𝑄 ∈ ℝ(𝑘+1)×𝑑

𝐾 ∈ ℝ(𝑘+1)×𝑑

𝑉 ∈ ℝ(𝑘+1)×𝑑

Feature

Tokenizer

𝑥 ∈ ℝ𝑘×1

×

×

×

×

𝑎 ∈ ℝ(𝑘+1)×(𝑘+1)

𝑎1,1

𝑎1,2

𝑎1,3

𝑎1,4

The attention of the first column

to the other columns, that is, how

closely the first column is related

to the other columns.

Softmax

+

×
×
×
×

𝑜𝑢𝑡𝑝𝑢𝑡 ∈ ℝ(𝑘+1)×𝑑

𝑎𝑤𝑒𝑖𝑔ℎ𝑡 ∈ ℝ(𝑘+1)×(𝑘+1)

𝑎𝑤𝑒𝑖𝑔ℎ𝑡𝑉

[CLS]

×

×

𝑎1,5

Predict ො𝑦

An Example of Multiple Samples.

Project Weight

𝑊𝑄, 𝑊𝐾 , 𝑊𝑉

Softmax

& Scaled

Output 𝑍 ∈ ℝ𝑏×𝑘×𝑑

Column
Attention MatrixStudent Table

S_id Name Gender Age

1 Tom F 20

2 John F 21

3 Lily M ?

Input Embeddings

Input Table

Pre-encoder

𝑇 ∈ ℝ𝑏×(𝑘+1)×𝑑𝑒

𝑄 ∈ ℝ𝑏×𝑘×𝑑

𝑉 ∈ ℝ𝑏×𝑘×𝑑

𝐾𝑇 ∈ ℝ𝑏×𝑑×𝑘

𝑎 ∈ ℝ𝑏×𝑘×𝑘

𝑎𝑤𝑒𝑖𝑔ℎ𝑡 ∈ ℝ𝑏×𝑘×𝑘

Various Transformer-based Methods

 FT-Transformer: Feature Tokenizer + Transformer

 Other Transformer-based methods:

 AutoInt

 TabTransformer

 Excelformer

 … Song W, Shi C, Xiao Z, et al. Autoint: Automatic feature interaction learning via self-attentive neural networks[C]//Proceedings of

the 28th ACM international conference on information and knowledge management. 2019: 1161-1170.

Huang X, Khetan A, Cvitkovic M, et al. Tabtransformer: Tabular data modeling using contextual embeddings[J]. arXiv preprint

arXiv:2012.06678, 2020.

Chen J, Yan J, Chen Q, et al. Excelformer: A neural network surpassing gbdts on tabular data[J]. arXiv preprint arXiv:2301.02819,

2023.

Regularization-based Structure

 Regularization methods are techniques used in machine learning to prevent overfitting

and improve the model's generalization

 Essentially, limit the model's complexity.

 Main idea

1. data augmentation

2. network architecture choices

3. penalty terms that explicitly influence parameter learning

TANGOS

 Based on regularizing neuron attributions.

 Attribution methods work by using gradient signals to

evaluate the contributions of the input features.

 Two aspects:

1. Specialization

2. Orthogonalization

Jeffares A, Liu T, Crabbé J, et al. TANGOS: Regularizing tabular neural networks through gradient

orthogonalization and specialization[J]. arXiv preprint arXiv:2303.05506, 2023.

Neuron Attributions

 Predictive function f using function composition

 𝑔 ∶ 𝑋 → 𝐻 maps the input to a representation ℎ =
 𝑔 𝑥 ∈ 𝐻

 𝐻 ⊆ ℝ𝑑𝐻 is a 𝑑𝐻 dimensional latent space.

 Use gradient signals to evaluate the contributions of the

input features.

 𝑎𝑗
𝑖(𝑥) ∈ 𝑅 to denote the attribution of the i-th neuron

w.r.t. the feature 𝑥𝑗

Jeffares A, Liu T, Crabbé J, et al. TANGOS: Regularizing tabular neural networks through gradient

orthogonalization and specialization[J]. arXiv preprint arXiv:2303.05506, 2023.

𝑓 = 𝑙 ◦ 𝑔

Specialization

➢ The contribution of input features to the activation of a

particular neuron should be sparse.

➢ a few features should account for a large percentage of

total attributions.

Jeffares A, Liu T, Crabbé J, et al. TANGOS: Regularizing tabular neural networks through gradient

orthogonalization and specialization[J]. arXiv preprint arXiv:2303.05506, 2023.

Orthogonalization

➢ Different neurons should attend to non-overlapping

subsets of input features given a particular input sample.

➢ Penalize the correlation between neuron attributions.

Jeffares A, Liu T, Crabbé J, et al. TANGOS: Regularizing tabular neural networks through gradient

orthogonalization and specialization[J]. arXiv preprint arXiv:2303.05506, 2023.

TANGOS Regularizer

Jeffares A, Liu T, Crabbé J, et al. TANGOS: Regularizing tabular neural networks through gradient

orthogonalization and specialization[J]. arXiv preprint arXiv:2303.05506, 2023.

Thanks for your time.
QA.

	默认节
	幻灯片 1: Deep Single Table Learning
	幻灯片 2: Outline

	Deeptablelearning
	幻灯片 3: Deep Learning Development History
	幻灯片 4: Deep Learning
	幻灯片 5: What is Deep Learning?
	幻灯片 6: Advantages of Deep Neural Networks (DNNs)
	幻灯片 7: Convolutional Neural Networks (CNNs)
	幻灯片 8: Tabular Neural Networks (TNNs)
	幻灯片 9: Challenges in TNNs

	data preprocessing
	幻灯片 10: Outline
	幻灯片 11: Recap: Data Preprocessing in Traditional Methods (1)
	幻灯片 12: Recap: Data Preprocessing in Traditional Methods (II)
	幻灯片 13: Data Preprocessing in Deep Learning (1)
	幻灯片 14: Data Preprocessing in Deep Learning (II)
	幻灯片 15: Data Preprocessing in Deep Learning (III)

	neural network
	幻灯片 16: Outline
	幻灯片 17: Intuition
	幻灯片 18: Neural Network Structure

	pre-encoder
	幻灯片 19: What’s Column Type Pre-encoding?
	幻灯片 20: Why Column Type Pre-encoding? (1)
	幻灯片 21: Why Column Type Pre-encoding? (II)
	幻灯片 22: What Does Column Type Pre-encoding Do?
	幻灯片 23: Advantages of Column Type Pre-encoding
	幻灯片 24: Column Type Pre-encoding (1)
	幻灯片 25: Column Type Pre-encoding (II)

	Tree-mimic structure
	幻灯片 26: Backbone Construction
	幻灯片 27: Tree-mimic Structure
	幻灯片 28: Tree-mimic Structure
	幻灯片 29: TabNet
	幻灯片 30: An example of DT-like classification
	幻灯片 31: The core of TabNet
	幻灯片 32: Structure of TabNet
	幻灯片 33: Sparse Feature Selection
	幻灯片 34: Sparse Feature Selection
	幻灯片 35: Sparse Feature Selection
	幻灯片 36: Decision Step
	幻灯片 37: Result of Feature Importance
	幻灯片 38: Structure of TabNet

	Transformer-based structure
	幻灯片 39: Neural network construction
	幻灯片 40: Transformer
	幻灯片 41: Encoder-Decoder structure
	幻灯片 42: Encoder-Decoder structure
	幻灯片 43: Encoder-Decoder structure
	幻灯片 44: Encoder-Decoder structure
	幻灯片 45: What’s Attention Mechanism?
	幻灯片 46: Why is the Attention Mechanism Useful?
	幻灯片 47: How does the Attention Mechanism Work?
	幻灯片 48: Various Attention Mechanism
	幻灯片 49: Scaled Dot-Product Attention
	幻灯片 50: Multi-Head Attention
	幻灯片 51: An Example of Multi-Head Attention
	幻灯片 52: Positional Encoding
	幻灯片 53: Sinusoidal Positional Encoding:
	幻灯片 54: An Example of Relative Position
	幻灯片 55: An Example of Positional Encoding
	幻灯片 56: Why can Transformer be used for tabular data?
	幻灯片 57: Transformer on Tabular Data
	幻灯片 58: FT-Transformer
	幻灯片 59: Feature Tokenizer
	幻灯片 60: An Example of Single Sample.
	幻灯片 61: An Example of Single Sample with CLS.
	幻灯片 62: An Example of Multiple Samples.
	幻灯片 63: Various Transformer-based Methods

	Regularization
	幻灯片 64: Regularization-based Structure
	幻灯片 65: TANGOS
	幻灯片 66: Neuron Attributions
	幻灯片 67: Specialization
	幻灯片 68: Orthogonalization
	幻灯片 69: TANGOS Regularizer

	qa
	幻灯片 70

