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= Deep Table Learning
Outline = Data Preprocessing

® Nleural Network Structure




Deep Learning Development History

| 940s—1960s: Neuron Models, Perceptron.
1969:“Perceptrons”.

| 980s—1990s: Backpropagation, Early CNNs & RNN:s.
2006: Deep Belief Networks (DBNs).

2012:AlexNet.

2014—Present: GANSs, Transformers, BERT, GPT-3, ChatGPT.



What is Deep Learning!?

= Deep learning can be:
= A way of learning.
= A way to get data.

= A way to combine data freely.

S

Everything can be vector.




Advantages of Deep Neural Networks (DNNs)

|.  Performance improvements particularly for large datasets.
2. Efficiently encoding multiple data types like images along with tabular data.

3. Alleviating the need for feature engineering, which is currently a key aspect in tree-
based tabular data learning methods.

4. End-to-end models allow representation learning which enables many valuable
application scenarios including data-efficient domain adaptation.

Arik S O, Pfister T. Tabnet: Attentive interpretable tabular learning[C]//Proceedings
of the AAAI conference on artificial intelligence. 2021, 35(8): 6679-6687.



Convolutional Neural Networks (CNNs)

= A convolutional neural network is a regularized type of feedforward neural
network that learns features by itself via filter (or kernel) optimization.
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An example of a CNN structure. A demonstration of CNN principles.

LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J].
Proceedings of the IEEE, 1998, 86(11): 2278-2324.



Tabular Neural Networks (TNNs)

= TNNs refer to these deep neural network methods on tabular data
= Data preprocessing
= Neural network structure

® Training strategy

Loss from different training

Student Table

!
S id Name Gender Age
1 Tom F 20
T T [ 7 [ o | e = "~ Output_
21N
3 Lily M 20
4 Alice M 21 N | "
5 Lucy M 19 Data Preprocessing eural networ Inference Output
structure
Input Table

Deep Table Learning Framework



Challenges in TNNs

|.  Low-quality training data
Missing or complex irregular spatial dependencies

Dependency on preprocessing

How N

Importance of single features



= Deep Learning
Outline = Data Preprocessing

® Nleural Network Structure




Recap: Data Preprocessing in Traditional Methods (|)

= Empty cell imputation
|.  Tabular data tends to have a lot of missing values.

2. Missing values can affect the training effect.

3. Do not change the original data distribution. athoc
= Methods meen 20
median 88
= nd - - Score
* mode 86
20 most frequent 21 ” 0 value 0
21
> sampling ~N ! forward fill 86
- 94
21 0 value 0 Py backward fill 94
22
KNN/Cluster - 88 interpolation 90

Categorical features Continuous features



Recap: Data Preprocessing in Traditional Methods (Il)

= Reduction and normalization

= Column-wise & Row-wise

" Min-Max Normalization, Z-Score/Standard.
= Error data repair

= Data repair is the process of fixing errors and inconsistencies in data to ensure its
accuracy and reliability for data analysis.

Student Table Student Table
S id Name  Gender Age Score S id Name  Gender Age
1 Tom F 20 96 1 Tom F 20 96
2 John FA 21 86 # 2 John 21 86
3 Lily M ? 89 3 Lily M ? 89
4 Alice ? 22 94 4 Alice ? 22 94
5 Lucy ? ? 80 5 Lucy ? ? 80




Data Preprocessing in Deep Learning (1)

= Data conversion:
= Convert non-numerical to numerical type values.

= Take the data from the format it was read in to data formats in deep learning platforms.

) sparse_matrix
Value conversion
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| S | ) :
F 0 ' 1" TensorFlow, tf.Tensor
F |:> 0 l (- ' d h 9 |
! NS i ndarray
M 1 : N:: NumPy : matrix |:> e I
F . y, )
F g : < O PYTOI’Ch : torch.Tensor
!
l \ J
!
!

MY
o
2.
<

J

Data storage format conversion



Data Preprocessing in Deep Learning (ll)

= Dimension enhancement:
= Essentially a coding technique that requires no training.
= Transform the feature dimension from low to high.

= Why!?

m Retain more information for better model utilization.



Data Preprocessing in Deep Learning (lll)

= Methods

|.  Categorical features: One-hot Encoding

2. Continuous features: Stack Encoding, Piecewise —

Linear Encoding(PLE), Periodic Activation Function 1
PLE(z) =[ 1| 1 ;__2 0 ]
fi(x) = Periodic(x) = concat[sin(v), cos(v)], v = [2mciz, ..., 2mcka] er e e e
Periodic Activation Function PLE
Feature Periodic(cl=1,c2=2)
1.0 [1.0, 1.0, 1.0] [1,0,0] [0.0,0.0, 1.0, 1.0]
1.25 [1.25, 1.25, 1.25] [1,0.25, 0] [1.0,0.0,0.0,-1.0]
3.75 [3.5, 3.5, 3.5] [1,1,1] [-1.0,0.0, 0.0, -1.0]

Examples of different dimensionality raising methods for continuous features.



® Deep Learning Methods
® Data Preprocessing

Outline ® Neural Network Structure

® Column Pre-encoder

= Backbone Structure




Intuition

= The purpose is to explore the relationship between columns.

® The relationships between columns are complex.

Physical Examination Table
1 T 17 29.1 | 404 | 1382 | 3.92
Height ~ Weight  Globulin  Albumin om 6 | 3 2 0 38
Low
@ O @ @ @ 0 .
2 John 183 85 342 493 147.0 4.62 feature
3 Lily 162 47 32.1 37.5 136.3 3.68 Middle
4 Alice 170 54 28.5 437 140.2 3.97 ‘ ‘ ‘ ‘ ' ‘ level
f r
5 Lucy 167 53 334 412 144.3 4.25 \ { eature
® O @ @ |Henka
l l l physique feature
physique liver health kidney health

Chen J, Liao K, Wan Y, et al. Danets: Deep abstract networks for tabular data classification and
regression[C]//Proceedings of the AAAI Conference on Atrtificial Intelligence. 2022, 36(4): 3930-3938.



Neural Network Structure

= TNNS’ structure consist of two parts :
= Column type pre-encoding

= Backbone construction

p p
x N
Py [ e !
-y 1s —> ) M
11 | =1y
I I
I Column
Preprocessed data : pre-encoding Backbone
N e or o o o o o




What’s Column Type Pre-encoding!?

= Mapping the scalar values of these features to high-dimensional embedding vectors,
with benefits:

= |ntuition: Model the semantic information of “scalar-type” values, by introducing some
trainable mapping functions.

® | ocation: Often at the beginning of the backbone network.

Age
10 map [[0.21, 0.14, 0.31, ],
|::> 0.11 0.25 0.17 v
|8 [ ) ) ) )
" [0.02, 0.18, 0.24, e,

Map (via trainable NNs) a column for “scalar” to “vectors”



Why Column Type Pre-encoding? (1)

= Diversity of tabular data:
= There are heterogeneous data consisting of continuous, categorical, and text features.

= Heterogeneous nature of tabular feature spaces.

Student Table

Name Gender Age Score

1 Tom F 20 89
2 John F 21 85
3 Lily M 22 92




Why Column Type Pre-encoding? (ll)

= Problems with raw data:
. Difficult to extract hidden information from data.

2. Difficult to capture complex relationships between features.

Raw values alone are difficult
to compare. Do 20 and 89
mean the same thing!?

Student Table
S id Name Gender

1 Tom F Adding the original column
2 John F 22 85 name makes it easy to tell
3 Lily M 21 92 the meaning of 20 and 89.

—_—tglglol it ol oty 0 —lelglagleteter 1,

The distribution of the six data points on the number line.



What Does Column Type Pre-encoding Do!

|. From low dimensions to high dimensions.

2. Feature space transformation. b e @

Lot ot i1oly 1g1 o1 1, —> ¢ o

!

Raise the dimension

> Transformation

v
o
o

For example, suppose you have a one-dimensional data distribution, and you
can either raise the dimension or transform the feature space.



Advantages of Column Type Pre-encoding

|.  Enrich the semantic expressiveness of these scalar types.

Increase the model capacity by introducing trainable mapping function.

Reduce the influence of data noise.

How N

Facilitate feature interaction and fusion in the backbone network.



Column Type Pre-encoding (1)

= Multi-layer perceptron (MLP) / Linear
= Add one or more MLPs.

= Better pre-encoding can be achieved with the help of nonlinear activation functions.

3.3 X [021, 014, 031, 042] 4+ [043]
1.2 X [021, 0.14, 031, 042] <+ [0.43]
5.2 X [021, 014, 031, 042] + [0.43]

An example of using MLP pre-encoder.



Column Type Pre-encoding (ll)

= | ook-up table

= Maintain a trainable coding table.
= A scalar value corresponds to a vector.

= Notes:

® Scalar ranges for different columns should not overlap.

[0.21, 014,  0.31, ]

[0.11, 025 017, -]
m) [0.02, 018 024, -]
[0.42, 0.05, 034, -]
[0.07, 027, 023, ]

A W NN — O

An example of using Look-up Table pre-encoder.



Backbone Construction

I. Tree-mimic Structure
2. Transformer-based Structure

3. Regularization-based Structure



Tree-mimic Structure

= Deepen the process using the principles of decision trees.

= The decision boundary of a decision tree can be irregular, aligning with the
heterogeneity of tabular data.

Decision Tree MLP-like

An example of a two-dimensional plane used for classification.



Tree-mimic Structure

= Main idea
|.  Make decision trees differentiable for deep learning.

2. Simulate the decision tree by training different thresholds corresponding to features.

Outlook
oy ovcemn™ |I> Differentiable
Humidity Yes Wind
2 a 2> Simulated d
>T75% <=T75% > 20 <=20 ° o o
iImulate ecision
/ AN / AN

No Yes No Yes



TabNet

= Motivation

» Tree models such as XGBoost, LightGBM, etc. often work better than MLPS because they
handle class features, missing values, and feature interactions well.

» Neural networks perform poorly on structured data because:
|.  Important features cannot be selected efficiently and all inputs are processed;
2. Lack of tree model decision path mechanism;

3. Difficulty explaining model decisions (black box problem)

Arik S O, Pfister T. Tabnet: Attentive interpretable tabular learning[C]//Proceedings
of the AAAI conference on artificial intelligence. 2021, 35(8): 6679-6687.



An example of DT-like classification

® DT-like classification using conventional DNN blocks
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Figure 3: Illustration of DT-like classification using conventional DNN blocks (left) and the corresponding decision manifold
(right). Relevant features are selected by using multiplicative sparse masks on inputs. The selected features are linearly
transformed, and after a bias addition (to represent boundaries) ReLU performs region selection by zeroing the regions.
Aggregation of multiple regions is based on addition. As C and Cs get larger, the decision boundary gets sharper.



The core of TabNet

|. Feature Selection:

= Using the attention mechanism, each step selects the important features and ignores the
unimportant ones.

= This allows each step to focus on a different piece of information, similar to a different
path in a decision tree.

2. Decision Step:

= Each layer uses a feedforward neural network that processes the currently selected
feature.

®m This is similar to how tree models learn different combinations of features at different
depths.



Structure of TabNet
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Arik S O, Pfister T. Tabnet: Attentive interpretable tabular learning[C]//Proceedings
of the AAAI conference on artificial intelligence. 2021, 35(8): 6679-6687.



Sparse Feature Selection

Input features

age workclass education marital.status occupation relationship race sex capital.gain capital.loss hours.per.week native.country
39 Private Prof-school Married-civ-spouse Prof-srec‘lalty Husband Asian-Pac-Islander  Male 0 2415 67 India
—
Professional occupation related Investment related

! Feedback from l L i i 1 : ¥ 4 : : Feedback to’:
i : EE— Feature selection — Input processing — Feature selection — Input processing —_— ]
i1 previous step | next step |
I 1
i l Aggregate information l ;

Predicted output (whether the income level >$50k)

Figure 1: TabNet’s sparse feature selection exemplified for Adult Census Income prediction (Dua and Graff 2017). Sparse feature
selection enables interpretability and better learning as the capacity is used for the most salient features. TabNet employs multiple
decision blocks that focus on processing a subset of input features for reasoning. Two decision blocks shown as examples process
features that are related to professional occupation and investments, respectively, in order to predict the income level.

Arik S O, Pfister T. Tabnet: Attentive interpretable tabular learning[C]//Proceedings
of the AAAI conference on artificial intelligence. 2021, 35(8): 6679-6687.



Sparse Feature Selection

m Soft feature selection with controllable sparsity in end-to-end learning.

= Employ a learnable mask M[i] € RE*P.

= The masking is multiplicative M[i] - f, f is feature.

Attentive
— transformer
1.0b| === softm e A
M[i] = sparsemax(P[i — 1] - h;(a[i — 1])) — spars (=
i o8 °
Plil = | o - muin .
. >
J=1 0.4 - | -'- g
- ali — 1] is attention score - 5
* h; is a trainable function, FC+BN N el /
- v is arelaxation parameter, if y = 1,a feature is used only atonce =~ —~ ¢ 7

Martins A, Astudillo R. From softmax to sparsemax: A sparse model of attention and multi-label
classification[C]//International conference on machine learning. PMLR, 2016: 1614-1623.



Sparse Feature Selection

m Soft feature selection with controllable sparsity in end-to-end learning.

= Employ a learnable mask M[i] € RE*P

= The masking is multiplicative M[i] - f, f is feature

Attentive
, transformer
M[i] = sparsemax(P[i — 1] - h;(a[i — 1])) e
i ()
Plil = | [ —mim -
= Add sparsity regularization in the form of entropy. 2

. B ZNsteps zB ZD _Mb,j [l] log(Mb,j [l] + 6)
sparse i=1 b=1 j=1 Nsteps - B

Martins A, Astudillo R. From softmax to sparsemax: A sparse model of attention and multi-label
classification[C]//International conference on machine learning. PMLR, 2016: 1614-1623.



Decision Step

Martins A, Astudillo R. From softmax to sparsemax: A sparse model of attention and multi-label

] Featu re Process' ng classification[C]//International conference on machine learning. PMLR, 2016: 1614-1623.

= Split for the decision step output and information for the subsequent step
[dlil,ali]l] = fi(M[i]-f)

" The overall decision embedding:

Feature
transformer




Result of Feature Importance

= The aggregate decision
contribution at i-th decision step
for the b-th sample.

= The aggregate feature importance
mask

3o (1M, [i]

M
D XS, [i1M 0]

agg-b,j =

Martins A, Astudillo R. From softmax to sparsemax: A sparse model of attention and multi-label
classification[C]//International conference on machine learning. PMLR, 2016: 1614-1623.

Syn2 dataset
M[1] M[3] M[4]
@
[+}
£
-
K
Syn4 dataset
M[1] M[2] M[3] M[4] MI3]

Feature importance masks and the aggregate feature importance mask.



Structure of TabNet
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Arik S O, Pfister T. Tabnet: Attentive interpretable tabular learning[C]//Proceedings
of the AAAI conference on artificial intelligence. 2021, 35(8): 6679-6687.



Neural network construction

|. Tree-mimic Structure
2. Transformer-based Structure

3. Regularization-based Structure



Transformer

® Sequence2Sequence
® |anguage translation
" image captioning
= text summarization
m Uses self-attention mechanisms to process sequential data.
" Encoder-decoder structure
= Attention Mechanism / Multi-Head Attention

= Positional Encoding

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30.
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Figure 1: The Transformer - model architecture.



Encoder-Decoder structure

® Encoder:

= Takes input token(word) by token and generates a set of numbers which is called
context vector

® Decoder:

= Takes context vector, process on it and generates output token by token

This is a cat. It ] contextf XAE—H M. fib
likes so cute. "‘ Encoder | Vector | Decoder SRR

An example of Encoder-Decoder structure



Encoder-Decoder structure

= Take unidirectional RNN as an example:

P | i ye—1b¢) = g(Ve—1, St €)

ht = f(ht—l’ xt) iZIEl.!:_‘/E{ﬁo @%ﬁﬂéﬁﬁﬁf%
Y1

¢ =q{hy - b)) 9, )7Ty

hel |k hr, o
@) @) o @
Encoder Q@ — 0@ context, O Decoder
o o o vector ¢ @
o |09 @) @
T T Bl
X1 ) xTx <START>

This is a cat. It likes so cute.



Encoder-Decoder structure

® Encoder:

= A stack of N=6 identical layers, each consisting of two sub-layers.

|. Multi-head self-attention mechanism

2. Position-wise fully connected feed-forward network

m Decoder:

= A stack of N=6 identical layers, each consisting of three sub-layers. ™

|. Masked multi-head self-attention mechanism
2.  Multi-head self-attention mechanism

3. Position-wise fully connected feed-forward network

= residual connection + layer normalization

Output
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Add & Norm N
Feed
Forward
s N Add & Norm
_ .
el Multi-Head
Feed Attention
Forward JN) Nx
—
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Multi-Head Multi-Head
Attention Attention
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Positional Positicnal
Encod 9 & :
ncoding y Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.



Encoder-Decoder structure

= Problem in Encoder-Decoder structure

= Encoder: capturing complete context of a large sentence within a fixed-length context vector.

® Decoder: in some cases the decoder only needs a particular word or group of words.

X Hl

V2 T UT R
‘n| [hy hr,
Encod © . 8 N 8 context
ncoder 8 : O O vector C'
o |@ @
T T T
X1 X2 XT,

This is a cat. It likes so cute.



What’s Attention Mechanism?

= An attention function can be described as mapping a query and a set of key-value pairs
to an output, where the query, keys, values, and output are all vectors.

__—

attention Key | ®\ value |
score function
Key 2 X value 2
a() o \
Key 3 5-, X )¢ value 3
X
Key 4 value 4
Key 5 value 5
query output

Bahdanau D, Cho K H, Bengio Y. Neural machine translation by jointly learning to align and
translate[C]//3rd International Conference on Learning Representations, ICLR 2015. 2015.



Why is the Attention Mechanism Useful?

m Selectively focus on relevant parts.
m Capture long-range dependencies.

" |mproved interpretability.



How does the Attention Mechanism Work!?

= No longer use only the last output context vector.

= Use an attention mechanism for all output states.

e | 1, ye-1},¢) = g¥Ve—1,5¢, ) -

¥

e | s Yeedb ¢i) = 9(Ve—1, S, €;)

<START>

" (; represents the context vector aggregated by the attention
mechanism. e;; represents attention scores.

Ty

Z exp(e;;)
C: = ah a;; = e:: = al(s;_ ,h.
L 'y tj Zileexp(eik) L] ( -1 ])

j=1




Various Attention Mechanism

= Additive attention
a(q, k) = W, tanh(W,q + Wk) € R
W, € R™4,w, e R™* W, e R
= The dimensions of q, k, v can be different.

= |t's like a multi-layer perceptron.

= Dot-product (multiplicative) attention

a(q, k) =q"'k e R

= Can be implemented using highly optimized matrix multiplication code.



Scaled Dot-Product Attention

" |nput:

|.  Q:queries of dimension dj, Scaled Dot-Product Attention

2. K:keys of dimension d, t
MatMul
3. V:values of dimension d,, 1 3
SoftM
= Qutput: | O+ =
|. a weighted sum of the values [ Mesk (opt)
l Scale
Attention(Q, K, V) = soft QKTV
ention(Q), K, V') = softmax( \/@) I S
t 1
— Q K V




Multi-Head Attention

= Linearly project the queries, keys and values h times with different, learned linear

projections to dy, d; and d,, dimensions.
Multi-Head Attention

= Perform the attention function in parallel. \
Linear
' Concat
MultiHead(Q,K,V,h) = Lmear(Concat(headl, . headh)) yy
head; = Attention(QW;°, KW/, vw}) Scaled Dot-Product :
0 ; , Attention
W € Rmodet, KW, VW, AT 31

£l
rj -2 - =
Linear Linear Linear

|




The
e Law

The
Law

An Example of Multi-Head Attention

= Multi-head attention learn information from different representation subspaces at
different positions.
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Two different heads from the encoder self-attention at layer 5 of 6.

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J].
Advances in neural information processing systems, 2017, 30.



Positional Encoding

= The position and order of words are crucial to the meaning of a sentence.
= To make use of the order of the sequence.

= Sinusoidal Positional Encoding:

pos

PE(pos,Zi) = sin( 57 )
10000%model
pos
PE(pos,2i+1) = cos( 21 )
10000%modet
= Composed of sine and cosine functions of different frequencies.
dimension low  mmm) high
1
frequency 1 —> 10000

wavelength 2 mmm)p 10000 - 27



Sinusoidal Positional Encoding:

= The sine and cosine function is used to represent the absolute position, and the
relative position is obtained by multiplying the two.

> For any fixed offset k, PE (,ps+k,2i)can be represented as a linear function of PE ;s 2.

PE (pos+k,2i) _ [ u 17] PE pos,2i) u = cos(w; - k) w: = 1
PE(pos+k,2i+1) —V u PE(pos,2i+1) "|v =sin(w; - k)’ 2L

10000%modet
» Compute the inner product of PE, s and PE, s to determine their relative position.

=

N

PE,os* PEpostk = sin(w;pos) - sin[w;(pos + k)] + cos(w;pos) - cos|w;(pos + k)]

| 1
I
)

cos(w;k)

o~
I
o



An Example of Relative Position

= Calculate the relative position of a hundred tokens, that is, the inner product between
the two position codes.

240
The greater the value,
320 the closer the distance.

200

180

160

140

120




An Example of Positional Encoding

= Plot the coding situation of each location.

20 'Fiff n .
-7l “W
dmodel = 256 ":i“lf'lf J|I|||| W ”w 0.0
80 M4 ,Fl'll f ”m -0.5
“f?nﬁ.wlll ‘hl
Amoder = 512 0:0




Why can Transformer be used for tabular data?

= TNN'’s core purpose (Recap):

= To explore the relationship between columns.

= Sequence and tabular data Tabular data

Sequence

‘token]

Between tokens

‘token] [token] [token] ...

Analogy between sequential data and tabular data.



Transformer on Tabular Data

® |ntuition

= The amount of attention that one column pays to another is the importance of the
relationship between the two columns.

= Main idea
- Calculate the attention between columns.

-+ The attention score is the weight of the column over the other levels of relevance.

Relation.o, = Attention(Q,K,V)= Attention(XW?, XWX, xw")

X is input embeddings.



FT-Transformer

= Feature Tokenizer + Transformer
- Transforms all features (categorical and numerical) to embeddings.

- A stack of Transformer layers.

Ty 17, Y
€T T [CLS] [cLS] > Predict = ]
"‘[lea?c%ﬁggx}' ma —> Transformer =

Figure 1: The FT-Transformer architecture. Firstly, Feature Tokenizer transforms features to embed-
dings. The embeddings are then processed by the Transformer module and the final representation of
the [CLS] token is used for prediction.



Feature Tokenizer

= Transforms the input features x to embeddings T € R¥*<.
T; =b; + fi(z;) eR*  f;:X; - R?
u ContinUOUS featureS: . m(num) W(num) b(ﬂ.u’ru] -
0.8] X

m fj(num) is implemented as the element-wise X

0.1
) ¢ pa | % [

—

L] T

multiplication with the vector W, | \
(cat)
. ca W cat
= categorical features: P b )
(cat) . . B
= f is implemented as the lookup table / )
J (cat) —
(cat) Sixd W,
V'G- e R°J Egca} . bgcat) d
Tj(num) _ b‘gnum) 4 mgnum) _ Wj(num) c Rd, L O A + J
H
(cat) _ 4(cat) Tyx7(cat) d
T; = bj + e; W; e R4,

Feature Tokenizer

T = stack [Tl('”'“m), L, i) plet) ngfﬂ] € R**d



An Example of Single Sample.

x € RkX1 The attention of the first column
] Tom - 20 to the other columns, that is, how
closely the first column is related
to the other columns.
Feature
Tokenizer
kxk
aweight €ER
Softmax
| 1] .
Tom [
F LT 1]
20 [T 1]
T € RKxde [TTTT]
HEEEE
Different colors represent FTT T 711
different columns. TT T 11T ]
kxd
AweightV output € R




An Example of Single Sample with CLS.

Feature
Tokenizer

[CLSICT T ]
I 1]
Tom B
F LT

v

The attention of the first column
to the other columns, that is, how
closely the first column is related
to the other columns.

Softmax

Qyeight € R+D)X(k+1)

20 [T

T € ]R(k+1)><de

|
|

K € Rk+1)xd q € RE+DX(k+1)
|

aweightV

Predict Y




An Example of Multiple Samples.

Column
Student Table J_IJ_IJ_l Attention Matrix
S id Name  Gender Age :_ T 1
1 Tom F 20 X L a € Rb*kxk
2 John F 21 ) | =
3 Lily M ? — |
Input Table Q € RP*kxd - Softmax
& Scaled
lPre-encoder KT € Rbxdxk
[ [ [ T |
Project Weight . T T 1 1 1 OutputZ € RPxkxd
: , bxkxk
Input Embeddings awelght € R

T € Rb*K+Dxd, V € Rbxkxd



Various Transformer-based Methods

® FT-Transformer: Feature Tokenizer + Transformer

T

Ty

I

[CLS]

Y
[ [cLS] j=» Predict =+ ]

Feature
Tokenizer

= Transformer =

® Other Transformer-based methods:

Autolnt

TabTransformer

Excelformer

Song W, Shi C, Xiao Z, et al. Autoint: Automatic feature interaction learning via self-attentive neural networks[C]//Proceedings of
the 28th ACM international conference on information and knowledge management. 2019: 1161-1170.

Huang X, Khetan A, Cvitkovic M, et al. Tabtransformer: Tabular data modeling using contextual embeddings[J]. arXiv preprint
arXiv:2012.06678, 2020.

Chen J, Yan J, Chen Q, et al. Excelformer: A neural network surpassing gbdts on tabular data[J]. arXiv preprint arXiv:2301.02819,
2023.



Regularization-based Structure

= Regularization methods are techniques used in machine learning to prevent overfitting
and improve the model's generalization

= Essentially, limit the model's complexity.
= Main idea

|. data augmentation

2. network architecture choices

3. penalty terms that explicitly influence parameter learning



TANGOS

= Based on regularizing neuron attributions.

= Attribution methods work by using gradient signals to Input
atu
evaluate the contributions of the input features.

= Two aspects:

|. Specialization A = e e
P Input %
Gradients: axj

2. Orthogonalization

Fepec=11511L+11E1,+1E,
gmh = cos(%,éﬂcos(%,§)+cos(§,§)

Figure 2: Method illustration. TANGOS
regularizes the gradients with respect to
each of the latent units.

Jeffares A, Liu T, Crabbé J, et al. TANGOS: Regularizing tabular neural networks through gradien
orthogonalization and specialization[J]. arXiv preprint arXiv:2303.05506, 2023.



Neuron Attributions

= Predictive function f using function composition

f=1l-g Input

Features

= g: X — H maps the input to a representation h =

glx) € H
= H C R% is a dy dimensional latent space. ah """"""""""""
Input _1
m Use gradient signals to evaluate the contributions of the Gradients; gx;
input features. e
o Ohs(x) Fepec=11511L+11E1,+1E,
a;:\xr) =
J 833j gonh=cos(%,§)+cos(§,§)+cos(§,§)
O a}(x) € R to denote the attribution of the i-th neuron _ , ,
Figure 2: Method illustration. TANGOS
W.r.t. the featu re X: regularizes the gradients with respect to
J each of the latent units.

Jeffares A, Liu T, Crabbé J, et al. TANGOS: Regularizing tabular neural networks through gradien
orthogonalization and specialization[J]. arXiv preprint arXiv:2303.05506, 2023.



Specialization

» The contribution of input features to the activation of a
particular neuron should be sparse.

> a few features should account for a large percentage of
total attributions.

£spc-:: Z Z”a Lb ”1

Input
Features

Input oh;
Gradients: axj

Fepec=11511L+11E1,+1E,
gmh = cos(%,éﬂcos(%,§)+cos(§,§)

Figure 2: Method illustration. TANGOS
regularizes the gradients with respect to
each of the latent units.

Jeffares A, Liu T, Crabbé J, et al. TANGOS: Regularizing tabular neural networks through gradien
orthogonalization and specialization[J]. arXiv preprint arXiv:2303.05506, 2023.



Orthogonalization

» Different neurons should attend to non-overlapping

subsets of input features given a particular input sample. out

Features

» Penalize the correlation between neuron attributions.

dH 1—1 N e N e
. oh,
Loren(z) = y‘ YYP Z(“Eb aj (lb)] Grﬁﬁ\ﬁégf
1—23 1 c
C —_— dH(dZH_]-) %pec:”%”ﬁ-”%”r*”%”1

gmh = cos(% E) + cos(% ,g) + cos(g ,g)

Figure 2: Method illustration. TANGOS
regularizes the gradients with respect to
each of the latent units.

Jeffares A, Liu T, Crabbé J, et al. TANGOS: Regularizing tabular neural networks through gradien
orthogonalization and specialization[J]. arXiv preprint arXiv:2303.05506, 2023.



TANGOS Regularizer

Rrancos () = M Lspec(®) + A2Lorth () Input

Features

1S 1 &, -
Lspec(z) = B Z E ZH@z(Ib)Ill R N
b=1 i=1 |

Input %

Gradients! 0x;

Lortn(z) = B Z ;Zlﬁ (-L'b ), a’ ()] Fepec=11511L+11E1,+1E,
—=J gonh=cos(%,§)+cos(§,§)+cos(§,§)

Figure 2: Method illustration. TANGOS
regularizes the gradients with respect to
each of the latent units.

Jeffares A, Liu T, Crabbé J, et al. TANGOS: Regularizing tabular neural networks through gradien
orthogonalization and specialization[J]. arXiv preprint arXiv:2303.05506, 2023.



Thanks for your time.

QA.
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