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 Shallow Methods

 Collective Classification

 Label Propagation

 Deep Learning Methods

 Graph Neural Networks

Outline



 Traditional DL is designed for simple grids or sequences

• CNNs for fixed-size images/grids

• RNNs for sequential data like text.

Deep Learning Meets Graphs: Challenges
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 Challenge with graphs

• Structure: nodes have arbitrary connections and neighbor sizes.

• Order: nodes lack a fixed ordering.

Deep Learning Meets Graphs: Challenges
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 Recall CNN

 Regular “graph”

 Graph Neural Network (GNN)

 Extend to irregular graph structure

Compare with CNN
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 GNNs iteratively compute node representations through two main components:

 Message Passing:  Aggregates information from a node and its neighbors.

 Feature Mapping:  Transforms features into a new representation space.

The General Architecture of GNNs
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 For a node 𝑣 at layer 𝑡, the two key components GNNs are:

 Message Passing:

  

where ℎ𝑣
(𝑡)

 𝑟epresents the vector of node 𝑣 at layer 𝑡,  𝑁(𝑣) is the neighbors of node 𝑣, 

𝑓𝑚𝑠𝑝() is the message passing function, and 𝑚𝑣
(𝑡)

 is the aggregation result, 

 Feature Mapping: 

         where 𝑓𝑚𝑎𝑝() is the feature mapping function.

Formulation of the General Architecture of GNNs
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 Message passing:

 Feature mapping: 

Various GNNs: Graph Convolutional Network (GCN)
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One line formulation of GCN by writing the above two operations together:

𝐴: the adjacent matrix 

𝐼: the identity matrix
መ𝐴 = 𝐴 + 𝐼: the adjacent matrix with self-loops
෡𝐷: the degree matrix of መ𝐴
𝐻: the matrix form of node embedding (i. e. , ℎ𝑣)

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.



 Computation graph

A toy example of 2-layer GCN on a 4-node graph
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Image from CS247 UCLA



 Message passing (same as GCN):

 Feature mapping: 

 Layer [1, K-1] 

 Layer K (same as GCN)

Various GNNs: Simple Graph Convolution (SGC)
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Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., & Weinberger, K. (2019, May). Simplifying graph convolutional networks. In International 

conference on machine learning (pp. 6861-6871). PMLR.
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 Message passing:

 Feature mapping (same as GCN): 

Various GNNs: GraphSAGE
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CONCAT(): the concatenation operator 

Note: the authors argues that CONCAT() 

can be replaced by various ops, like ADD, 

LSTM, MEAN, and Pool.  

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information

processing systems, 30.



 Message passing: 

 Feature mapping: the same as GCN.

Various GNNs: Graph Attention Network (GAT)

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint 

arXiv:1710.10903.
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 The accuracy of OGC is SOTA

A SOTA GNN: Optimized Simple Graph Convolution (OGC)

Recorded by Paperswithcode.com

Wang, Z., Ding, H., Pan, L., Li, J., Gong, Z., & Philip, S. Y. (2024). From 

cluster assumption to graph convolution: Graph-based semi-supervised 

learning revisited. TNNLS.



 The speed of OGC is very fast

A SOTA GNN: Optimized Simple Graph Convolution (OGC)

OGC is 130 to 500 times more efficient than the best runner-up deep GNNs.



 Each layer of OGC includes two parts:

 Message passing (lazy graph convolution):

 Supervised EmBedding (SEB): 

How OGC works?
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𝛽 ∈ 0,1 : the moving probability that a node 

moves to its neighbors in every period.

Note: U is used to stand for node embedding 

matrix to be consist with the paper.

𝑊 is a label prediction function

𝑌 is the original label information

𝑍(𝑘) is the predicted soft labels at the k-th iteration

𝑆 is a diagonal matrix (for supervised label indicator)

Same as GCN



One Line Formulation of OGC

At the each (i.e., 𝑘-th) layer, OGC can be formulated in one line:

Lazy Graph Convolution

For node classification, at the last (i.e., 𝑘-th) layer, OGC gets the label predictions:

Supervised EmBedding (SEB)



 OGC is a shallow method, which means it does not need huge validation set. In the 

learning process, it uses both train and validation sets as the supervised knowledge.

 Parameter learning objective: Supervised using additional labels from both the training and 

validation sets.

 Parameter update objective: Performed solely on the training set, excluding the validation 

set to avoid overfitting.

How to Train OGC: Less Is More (LIM) Trick

The core idea behind the LIM Trick is to enable AI models to learn from extensive supervised 

datasets—including both training and validation data—while minimizing parameter updates to 

prevent overfitting.



Pseudo-code of OGC

OGC is very simple with only three steps (at each iteration):

1. Update the label prediction function W

2. Update the node embedding results U

3. Get the label prediction results 



 Heterogeneous GNNs (HGNNs) 

 Graph-Level GNNs

 Other Advanced GNNs (e.g., Transformers for graphs, GNN-based Autoencoders) 

More Types of GNNs



Thanks for your time.
QA.
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