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Abstract—There exists a lot of research work on social ties, few of which is about the directionality of social ties. However, the
directionality is actually a basic but important attribute of social ties. In this paper, we present a supervised learning problem, the tie
direction learning (TDL) problem, which aims to learn the directionality function of directed social networks. Two ways are introduced to
solve the TDL problem: one is based on handcrafted features and the other, named DeepDirect, learns the social tie representation
through the topological information of the network. In DeepDirect, a novel network embedding approach, which directly maps the
social ties to low-dimensional embedding vectors through deep learning techniques, is proposed. DeepDirect embeds the network
considering three different aspects: preserving network topology, utilizing labeled data, and generating pseudo-labels based on
observed directionality patterns. Two novel applications are proposed for the learned directionality function, i.e., direction discovery on
undirected ties and direction quantification on bidirectional ties. Experiments are conducted on five different real-world data sets about
these two tasks. The experimental results demonstrate our methods, especially DeepDirect, are effective and promising.

Index Terms—Tie Direction Learning; Network Embedding; Social Networks; Social Ties
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1 INTRODUCTION

O NLINE social networks are changing people’s life, and
these changes, such as making friends, coauthoring papers,

recommending books and discussing anecdotes, are propagated
through social ties. Each social tie is a relationship between
two individuals. In different social networks, social ties have
different meanings, e.g., friendship in social media, and co-author
relationship in academic social networks. From the graph-theoretic
viewpoint, a social tie is an edge of the graph which represents the
whole social network.

Analysis of social ties can help people understand the social
network better and improve the results of many tasks such as link
prediction [1] and community detection [2]. Thus, this area has
attracted tremendous interest from both academic and industrial
communities. Researchers have studied some attributes of social
ties, e.g., strength [3] [4] and sign [5] [6] [7]. However, as
an important property of social ties, the directionality of social
ties is rarely studied. In this paper, we focus on modeling the
directionality of social ties in directed social networks for two
requirements.

First, there are often bidirectional social ties, whose direction-
ality could be quantized, in a directed social network. We argue
that the two directions of a bidirectional tie are not always equal,
i.e., one of the directions may be stronger than the other [8]. Thus,
we could quantize the two directions for a bidirectional tie to
understand more about this relationship, e.g., who is dominant in
this relationship? Through quantizing all the bidirectional ties in
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a directed network, we could know more about it so that some
mining tasks, e.g., link prediction, can get better performance on
this network.

Second, there may exist undirected ties whose directions need
to be predicted in a newly formed directed social network. When
we create a new social network for some reasons, it is easier to
find social ties between individuals than to know the direction of
these ties. For example, we can build a social network containing
all the relationship from different social media, e.g., Facebook,
Instagram, LinkedIn, and Twitter. It is easy to discover who and
who are friends through mining the social ties in different social
media [9], but it may be difficult to distinguish who is the proposer
in a relationship because social ties in some social media, e.g.,
Facebook, are undirected. Thus, besides some directed ties, there
are many undirected ties in this newly formed network. We need
to predict their directions to make this network complete, since
knowing the proposers of undirected social ties benefits mining
tasks on the network [10].

These two requirements motivate us to study how to model
the directionality information in directed social networks. In this
study, we propose a novel problem, which is called the tie
direction learning (TDL) problem. The goal of TDL is to learn the
directionality function, which is used to model the social ties, of a
given directed social network. Then the directionality function can
be used either for discovering the directions of undirected social
ties or for quantizing the directionality of bidirectional social ties
in this network.

The most related work to this paper is our previous study [10]
which considers the directions of social ties are existing but hidden
in undirected social networks and defines a new problem, i.e., the
tie direction inference (TDI) problem. Through investigating the
directionality patterns discovered in directed social networks, we
propose four consistency patterns (the Degree Consistency Pattern,
the Triad Status Consistency Pattern, the Similarity Consistency
Pattern as well as the Collaborative Consistency Pattern) and a
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Fig. 1. A mixed social network G = (V,Ed
⋃
Eb

⋃
Eu), where

V = {a, b, c, d, e, f, g, h, i, j}, Ed = {(d, a), (c, f), (e, d), (f, e),
(h, f), (i, f), (f, j)}, Eb = {(b, f), (d, f), (e, g), (e, h)}, and Eu =
{(b, d), (c, j), (h, i)}.

framework named ReDirect based on these patterns. ReDirect
recovers the hidden directions by finding the redirected network
which accords with the four patterns as much as possible.

However, ReDirect is inappropriate to the TDL problem for
a main reason: It heavily depends on the four patterns and gives
them equal weights. The foundation of ReDirect is that most net-
works have the four patterns, but for a given network it is difficult
to guarantee that there exists no other pattern and the four existing
patterns are equally important. The reason for this shortcoming is
that ReDirect is designed for undirected networks which do not
have any directionality information. The TDL problem is defined
on networks with directed ties, which means there are labeled
data. Thus, it is natural to leverage the labeled data to overcome
the weakness of ReDirect. We propose our own approaches in this
paper, which are not restricted to the four patterns.

How to represent social ties as feature vectors is a very impor-
tant part in our study to solve the TDL problem. In general, social
ties contain two kinds of information: topological information
and content information. Content information is usually easy to
be represented as features, but it is much harder to represent
topological information of social ties. This study focuses on
topological information because it is very challenging. In order to
fully understand the topological information, content information
is not considered in this paper.

In this work, we address the challenge of representing social
ties with only topological information in two different ways: one
is based on hand-crafted features and the other is with the help
of a novel network embedding approach. Hand-crafted features
are widely adopted in the studies about social ties [5], [7]. But
the embedding technique is used in this area for the first time.
This paper employs the embedding technique to generate feature
vectors for social ties, since embedding methods are proved
effective in many other areas such as natural language processing
[20] and node based network analysis [16].

Traditional network embedding approaches map the nodes to
low-dimensional vectors. Thus, if we want to represent a given
social tie we have to generate a representation vector according to
the embedding vectors of the two endpoints of this tie. We argue
this indirect way may cause the loss of topological information of
social ties. In our novel network embedding approach, we directly
map the social ties of a social network to low-dimensional vectors,
and the embedding vectors are learned through preserving the
network topology.

The main contributions of this paper are summarized as
follows.

• This paper defines a novel problem, tie direction learning
(TDL) problem, which aims to learn the directionality func-
tion in a given directed social network.

• Two methods are proposed in this paper to solve the TDL
problem. One is based on handcrafted features and the
other, named DeepDirect, is based on a novel edge-based
network embedding method. The DeepDirect learns the tie
embedding vectors with the consideration of three aspects,
i.e., preserving network topology, utilizing labeled data, and
introducing a priori knowledge.

• This paper proposes two applications for directionality func-
tion, i.e., direction discovery on undirected ties and direction
quantification on bidirectional ties. Experiments are con-
ducted on five data sets for the two applications. The results
show our DeepDirect model could learn the directionality
functions well for different social networks.

The rest of this paper is organized as follows. The definition
of TDL and some related concepts are presented in Sec. 2. In
Sec. 3.2, a simple but effective solution based on hand-crafted
features is introduced to solve the TDL problem. In Sec. 4, we
propose a model named DeepDirect for the TDL problem, and
DeepDirect is based on a novel graph embedding method which
maps social ties to low-dimensional vectors. Two applications of
the TDL problem are shown in Sec. 5. The experimental results
about our proposed methods are demonstrated in Sec. 6. Sec. 7
reviews the related work. At last, Sec. 8 concludes this paper.

2 PROBLEM DEFINITION

In this section, some useful concepts and the problem description
of TDL are presented.

As discussed in Sec. 1, there exist directed social networks
with undirected ties as well as those with bidirectional ties. Note
that these two types of social ties are totally different in this paper,
i.e., undirected ties are those whose directions are unknown but
directions of bidirectional ties are clear. This study proposes a
general network model, named mixed social network, which can
be applied in both situations.

Definition 1 (Mixed social network). A mixed social network is
denoted by a graph G = (V,E), where E = Ed

⋃
Eb
⋃
Eu

and Ed
⋂
Eb = Ed

⋂
Eu = Eb

⋂
Eu = ∅. V is the set of

individuals. Ed ⊆ V × V is the set corresponding to directed
social ties (|Ed| > 0), Eb ⊆ V × V is the set corresponding to
bidirectional social ties, andEu ⊆ V ×V is the set corresponding
to undirected social ties. Each (u, v) ∈ Ed

⋃
Eb represents a

directed social tie, and each (u, v) ∈ Eu represents an undirected
social tie. ∀(u, v) ∈ Eb

⋃
Eu, we have (v, u) ∈ E, and

both (u, v) and (v, u) represent the same social tie. However,
∀(u, v) ∈ Ed, (v, u) /∈ E.

Notice that Ed should be a non-empty set, while Eb and Eu
can be empty. Fig. 1 shows an example of mixed social networks.
Then the definition of the directionality function on mixed social
networks is as follows.

Definition 2 (Directionality function). In a given mixed social
network G = (V,E), there exists a directionality function d :
E → [0, 1].

The directionality function is the universal model proposed
in this paper to describe the directionality information in mixed
social networks. It has different meanings for different types of



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2877748, IEEE
Transactions on Knowledge and Data Engineering

3

TABLE 1
Notations

Notation Meaning
G a mixed social network
V node sets of the network
E social tie sets of the network
d(, ) directionality function
degout(u) the out-degree of node u
degin(u) the in-degree of node u
deg(u) the degree of node u
cc(u) closeness centrality of node u
bc(u) betweenness centrality of node u
eei(u, v) number of the ith type of triangles for tie (u, v)
xuv vector of hand-crafted features of tie (u, v)
l number of dimensions of embedding vectors
M embedding matrix
me embedding vector for tie e
N connection matrix
ne connection vector for tie e
Ltopo loss about network topology
Llabel loss about labeled data
Lpattern loss about directionality patters
L total loss for E-Step
w weights of the logistic regression LR in D-Step
b bias of the logistic regression LR in D-Step
c(e) connected ties of tie e
C(G) all the connected tie pairs
γ maximum of common neighbors for Lpattern
λ the number of negative samples
α weight of Llabel in L
β weight of Lpattern in L
ye label of social tie e
ye predicted label of tie e
yde pseudo-label w.r.t. Degree Consistency Pattern
yte pseudo-label w.r.t. Triad Status Consistency Pattern
Pc distribution for sampling a tie in begin of each iteration
Pn distribution for the negative sampling

social ties. For a tie e = (u, v) ∈ Ed or Eu, d(e) represents the
probability that this tie is from u to v. For bidirectional ties e =
(u, v), e′ = (v, u) ∈ Eb, d(e) and d(e′) are the directionality
weights which can quantitatively measure the two directions of
this tie pair.

Definition 3 (Tie direction learning problem). Given a mixed
social network G, the tie direction learning (TDL) problem is to
learn the directionality function d of G.

From the above discussion, it is easy to discover that the TDL
problem is a supervised learning problem, where ties in Ed are
the labeled training data.

Before presenting the rest of this paper, we summarize the
notations used in this paper and show them in Table 1. For
convenience, given a social tie e = (u, v), the subscripts uv and
e have the same meaning, e.g., muv = me.

3 LEARNING BASED ON HANDCRAFTED FEA-
TURES

In this section, a simple but effective way is introduced to solve
the TDL problem.

3.1 Generating Handcrafted Features
We construct handcrafted features for all the social ties with
network topology. The following handcrafted features based on
the statistics of the network are chosen, some of which are used in
previous work about sign prediction of social ties [5], [7]:

Node degree. It is natural to use the degrees of the two nodes
of a social tie as a part of its features. We slightly modify the
common definitions of out-degree (denoted as degout) and in-
degree (denoted as degin) for our mixed social networks:

degout(u) =
∣∣∣{v|(u, v) ∈ Ed ∪ Eb}∣∣∣+ 1

2

∣∣∣{v|(u, v) ∈ Eu}∣∣∣ (1)

degin(u) =
∣∣∣{v|(v, u) ∈ Ed ∪ Eb}∣∣∣+ 1

2

∣∣∣{v|(v, u) ∈ Eu}∣∣∣ (2)

The definitions on directed and bidirectional social ties remain.
However, if (u, v) is an undirected social tie, it contributes ‘1/2’
to both degout and degin for both nodes. Thus, for a given social
tie (u, v), both the out-degrees and the in-degrees for u and v, i.e.,
degout(u), degout(v), degin(u) and degin(v), are employed as
four degree features.

Node centrality. The closeness centrality (cc) and between-
ness centrality (bc) are two widely used metrics to measure the
centrality of nodes in a network. They are defined as:

cc(u) =
1∑

v 6=u disuv
(3)

bc(u) =
∑
i6=u6=j

σij(u)

σij
(4)

where disuv is the distance between nodes u and v through a
shortest path, σij denotes the number of shortest paths between
nodes i and j, and σij(u) denotes the number of shortest paths
between nodes i and j that involve node u. For convenience,
the network is regarded as an undirected graph when calculating
shortest paths. For a given social tie (u, v), cc(u), cc(v), bc(u)
and bc(v) are employed as four centrality features.

Directed triad count. Inspired by the status theory of directed
networks [34] and the triad status consistency pattern in [10], we
propose the directed triad count features for the TDL problem.
Similar features are used in [7], [5] and show the effectiveness. For
a social tie (u, v), the directed triad count is a category of features
w.r.t. the triads involving (u, v). For each common neighbor w
of u and v, nodes w, u and v form a triad. Considering the
directionality of (w, u) and (w, v), each of them has 4 types, and
thus we can obtain 24 = 16 types of triads for a tie. Therefore,
for a social tie (u, v), 16 directed triad count features, denoted as
eei(u, v)(i = 1, 2, ...16), are employed to represent the number
of those 16 types of triads formed by u, v and all their common
neighbors. For instance, if there are five triads belonging to the
first type, then ee1(u, v) = 5. Notice that the directionality of
(u, v) is not taken into consideration when generating features,
since the directions of some ties are unknown.

The above three categories of features, i.e., node degree
features, node centrality features and directed triad count features,
are put together to form the feature vectors for all the social ties.
The feature vector for a social tie e is denoted as xe. Note that
the feature vector for a tie (u, v) is different from that for (v, u)
because of the directionality difference.

3.2 Modeling the Directionality Function
We model the directionality function with the logistic regression:

d(e) = σ(w · xe + b) =
1

1 + e−(w·xe+b)
, (5)

where σ is the sigmoid function, xe indicates the feature vector,
and w as well as b are the parameters of the logistic regression,
which need to be learned.

For each directed social tie (u, v) in Ed, we construct two
instances to train the model, one with features for (u, v) as well
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as label ‘1’ and the other with features for (v, u) as well as
label ‘0’. Thus, through training this logistic regression model,
the directionality function of the given network can be learned.

4 LEARNING WITH DEEP MODEL

Different from generating handcrafted features, an alternative way
to obtain features of social ties is learning the features automat-
ically from the raw data. A popular technique, which is called
graph embedding [11], [12], aims to solve this automatic feature
learning problem on graphs. A typical graph embedding method
maps the graph into a low-dimensional space, usually through
unsupervised learning, to obtain the embedding vector for each
node. The embedding vectors are treated as the feature vectors
and used in follow-up vector-based machine learning algorithms.

Recent graph embedding methods [13], [14], [15], [16], [17]
all utilize deep learning techniques, because deep learning is very
good at representation learning and graph embedding can be seen
as the graph representation learning. However, the feature vectors
for social ties are necessary to solve the TDL problem and existing
graph embedding methods are all node-based, which means they
map nodes rather than edges into a low-dimensional space.

There are two indirect ways to represent social ties with
existing node-based graph embedding methods. The first one is to
generate the vector for a social tie based through some operations
(average, Hadamard product, etc.) on the two embedding vectors
corresponding the two endpoints of this tie [16]. However, this
approach does not define the edge-level similarity, and the edge
embeddings are obtained based on the node-level similarity [18],
which means it cannot capture edge features well in our TDL
problem.

The second one is to convert the given graph to its line graph
[19] and run node-based graph embedding methods on this line
graph. The definition of the line graph is as follows: the nodes
of the line graph correspond to the edges of the original graph,
and there is a directed edge in the line graph from e1 to e2,
if and only if in the original graph the target node of e1 is the
source node of e2. From the definition, it is easy to find out that
the line graph is larger than the original graph from the aspects
of both nodes and edges. From the node aspect, |Vline| equals
to |Eoriginal|, which is always much larger than |Vorginal| (the
subscripts ‘line’ and ‘original’ indicate the line graph and the
original graph respectively). From the edge aspect, for a node
in the original graph, if its in-degree and out-degree are d1 and
d2 respectively, then there will be d1× d2 edges corresponding to
this node in the line graph. Thus, handling large line graphs may
take unacceptable time for node-based graph embedding methods.

Besides, existing node-based graph embedding methods are
not optimized for the mixed social network in the TDL problem,
i.e., they cannot make full use of the directionality information in
mixed social networks.

Thus, this study proposes a model named DeepDirect to solve
the TDL problem, and it is based on a novel edge-based graph
embedding method, which is designed for the TDL problem to
map the social ties in a mixed social network to low-dimensional
feature vectors.

In the rest of this section, our DeepDirect model is presented.
We first introduce the overview of DeepDirect in Sec. 4.1. In
Sec. 4.2, Sec. 4.3 and Sec. 4.4, the details of the major part,
i.e., E-Step, are discussed. Next, Sec. 4.5 shows how to train
DeepDirect. At last, we give the complete algorithm of learning

directionality function with the DeepDirect model and discuss its
time complexity in Sec. 4.6.

4.1 The Overview of DeepDirect
Fig. 2 shows the overview of DeepDirect. It consists of two parts:
E-Step and D-Step. In E-Step, for a given mixed social network
G, we maps the social ties to low-dimensional embedding vectors
which form an embedding matrix M ∈ R|E|×l (l is the length of
embedding vectors), e.g., the social tie (u, v) corresponds to the
row vector muv in M . In D-Step, the directionality function d of
G is learned based on M through a logistic regression model with
the labeled data generated from Ed, and the logistic regression
model is the same as in Sec. 3.2.

Since E-Step is the main part, some of its details are presented
as follows. Before learning the embedding matrix, we need to pre-
process the social ties in Ed. For each social tie (u, v) ∈ Ed, we
add (v, u) to Ed and record their labels (i.e., 1 and 0, respectively)
additionally to regard them as labeled data. The values in the
embedding matrix M are randomly initialized and are optimized
through minimizing a loss function L, which consists of three
parts, i.e., Ltopo, Llabel and Lpattern.

Ensuring the effectiveness of the embedding matrix from three
different aspects, i.e., network topology, labeled data and a priori
knowledge, is the key idea of E-Step. Three loss functions (Ltopo,
Llabel and Lpattern) are designed w.r.t. those three aspects, and
the embedding matrix M is optimized through minimizing the
combination of the loss functions, which is L.

The first loss function, Ltopo, focuses on all the social ties
in the mixed social network G, and it preserves the topology of
G, which means the social ties that are connected (the formal
definition is presented in Sec. 4.2) should be mapped close to each
other in the embedding space. The basic idea of optimizing the
embedding matrix M is minimizing Ltopo. If we only consider
Ltopo and ignore Llabel and Lpattern, the embedding process is
unsupervised.

There exist labeled data in Ed, and thus they should be
leveraged to help optimize the embedding matrix. To do so, a
classifier is introduced to predict the label of directed social ties
(ties inEd). We jointly learn the embedding and classification, and
thus the embedding vectors will be more discriminative in order
to be classified correctly. The second loss function Llabel is used
to define the classification error on the labeled data. Combining
Llabel and Ltopo could improve the discrimination of embedding
vectors with the topology of G preserved.

The labeled data are not always sufficient, and there may be far
more undirected social ties than the directed social ties in a mixed
social network. Thus, these undirected social ties also need to be
leveraged. Two patterns of directionality, which are discovered in
ReDirect [10], are introduced, and pseudo-labels for undirected
social ties are generated based on the two patterns. The last loss
function, Lpattern, is then defined based on the classification error
on the undirected ties with pseudo-labels. This loss is an effective
supplement to Llabel.

In the following three subsections, we will present these three
loss functions in detail.

4.2 Preserving the topology of the network
The network topology is the most important information of our
mixed social network, and thus the first goal of DeepDirect is to
preserve the topology of a given network after it is embedded. A
local structure named connected tie is defined as follows.
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Fig. 2. The overview of DeepDirect. It consists of two parts: E-Step and D-Step. In E-Step, the embedding matrix M w.r.t. the given network G is
obtained, and in D-Step the directionality function d of G is learned based on the embedding matrix M . The embedding is considered from three
different aspects in E-Step. We preserve the network topology through the loss Ltopo, utilize the labeled data with the loss Llabel, and introduce a
priori knowledge, i.e., directionality patterns, by Lpattern.

Definition 4 (Connected Tie). Given a mixed social network
G = (V,E) and two social ties e1 = (u1, v1) ∈ E and
e2 = (u2, v2) ∈ E, if v1 = u2 and u1 6= v2, we call e2
a connected tie of e1, and we call the ordered pair (e1, e2) a
connected tie pair. The set of all the connected ties of e1 is denoted
as c(e1). The set of all the connected tie pairs in G is denoted as
C(G).

The tie degree of a social tie e = (u, v) is defined as follows:

degtie(e) =
∣∣∣{v′|(v, v′) ∈ E}∣∣∣ . (6)

It is obvious that degtie(e) =
∣∣∣c(e)∣∣∣.

The connected tie pairs could represent the topology of a
mixed social network in the view of social ties.

Inspired by the idea of skip-gram model [20], a connection
matrix N ∈ R|E|×l is introduced, and each tie e corresponds to a
row vector ne, called the connection vector. Then the probability
that e′ is a connected tie of e according to the embedding result is
defined as follows:

p(e′|e) = exp(me · ne′)∑
et∈E exp(me · net)

, (7)

where me is the embedding vector of e, and ne′ and net are the
connection vectors of e′ and et, respectively.

Based on Eq. 7, we define the objective function that maxi-
mizes the average log probability:

O =
∑
e∈E

∑
e′∈c(e)

log p(e′|e) . (8)

The computation cost to maximize O is quite high due to the
calculation of∇ log p. Thus, we use the negative sampling method
[20] and replace log p(e′|e) by

log σ(me · ne′) +
λ∑
i=1

Eei∼Pn(f) log σ(−me · nei), (9)

where λ is the number of negative ties, and Pn(f) ∝
degtie(f)

3/4 is the noise distribution which ei is drawn from.

Thus, the first loss function is obtained as:

Ltopo = −
∑
e∈E

∑
e′∈c(e)

(log σ(me · ne′)

+

λ∑
i=1

Eei∼Pn(e)(log σ(−me · nei))) .
(10)

If the embedding matrix is optimized with Ltopo, the network
topology could be well preserved. However, the label information
is only used in D-Step if Ltopo is leveraged as the only loss in
E-Step. To achieve better performance, we think of the idea to
use the label information in E-Step. Thus, this study proposes the
second loss function Llabel to do so, which is presented in the
next subsection.

4.3 Improving discrimination with labeled data
A semi-supervised embedding model could be more discrimina-
tive than an unsupervised one, because it is able to map the ties
with same directions closer and the ones with different directions
farther. Moreover, the label information can propagate among the
unlabeled ties through the network topology. That is why the label
information is introduced in E-Step.

The way we leverage the label information is to jointly train
the embedding matrix with a logistic regression which predicts the
labels of ties in Ed:

ye = σ(w′ ·me + b′) =
1

1 + e−(w′·me+b′)
, (11)

where w′ and b′ are the parameters of the logistic regression.
The cross-entropy is used as the prediction loss for a directed

social tie:

J(e) = −(ye log ye + (1− ye) log(1− ye)) . (12)

Thus, Llabel is defined as follows:

Llabel = −
∑
e∈Ed

degtie(e)J(e)

= −
∑
e∈Ed

degtie(e)[ye log ye + (1− ye) log(1− ye)].
(13)
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It can be seen that the directed ties are assigned different
weights, which are equal to their tie degrees. The social ties with
higher tie degrees are connected to more social ties, and thus,
if their embedding vectors are more discriminative, then more
unlabeled ties could be discriminative through the effort of Ltopo.
Therefore, the tie degrees are used as the weights of labeled ties
in Eq. 13 to make sure that ties with higher tie degrees are more
valued.

The label information is not always sufficient, sometimes we
have to face the situation that in a mixed social network there are
few directed social ties but lots of undirected social ties. In the
next subsection, how to leverage the undirected ties with a priori
knowledge to further improve the effectiveness of the embedding
matrix is discussed, and the last loss function, i.e., Lpattern, is
presented.

4.4 Modeling directionality patterns for unlabeled data

The directionality information of directed social ties is represented
as their label information, and is leveraged to improve the discrim-
ination of the embedding vectors through Llabel. However, the
undirected social ties have no label information, which means they
are not involved in Llabel. In this subsection, this paper discusses
how to discover the latent directionality information of undirected
social ties through a priori knowledge to supplement the label
information on directed social ties.

ReDirect [10] proposes four directionality patterns observed in
real-world directed social networks, i.e., the Degree Consistency
Pattern, the Triad Status Consistency Pattern, the Similarity
Consistency Pattern and the Collaborative Consistency Pat-
tern. The first two patterns are introduced to our embedding
method, because they are simple, effective, and compatible with
existing parts in E-Step.

Note that the importance of the directionality patterns is
different in ReDirect and our DeepDirect. The four directionality
patterns are the cornerstone of ReDirect model. However, in this
paper they are just used to discover some additional information
as the supplement to the existing topology information and label
information, because it is noticed that the patterns are of different
significance in different networks, which means these patterns
have limitations.

The definitions of the Degree Consistency Pattern and the
Triad Status Consistency Pattern are as follows:

Definition 5 (Degree Consistency Pattern). The directed ties
usually link from nodes with lower degrees to those with higher
degrees.

According to this pattern, given a directed social tie (u, v)
in a mixed social network, u usually has lower degree than v.
Therefore, nodes with low degrees tend to be the proposer of social
ties, and those with high degrees tend to be responders.

Definition 6 (Triad Status Consistency Pattern). The directed
social ties usually tend to avoid loops in social networks.

This pattern suggests that given directed social ties (u, v) and
(v, w) in a network, u is more likely than w to propose the social
tie between u and w.

The above two patterns are proposed based on observations
from real-world social networks, and are verified through com-
prehensive data analysis in our previous work [10]. They are
both consistent with the status theory [34], which implies that

in a directed tie the proposer (source node) usually views the
responder (target node) as having higher status. Since this paper is
not discussing these patterns, other details are not presented here,
and can be found in [10].

In this study, these two directionality patterns are used to
discover latent directionality information of undirected social ties.
Some pseudo-labels for undirected social ties are generated based
on these two patterns.

Given a pair of undirected social ties (u, v) and (v, u) in
G, the pseudo-labels for them based on the Degree Consistency
Pattern are defined as:

yduv =
deg(u)

deg(u) + deg(v)

ydvu =
deg(v)

deg(u) + deg(v)
.

(14)

Besides, pseudo-labels for them based on the Triad Status
Consistency Pattern are also generated:

ytuv =
1

|t(u, v)|
∑

w∈t(u,v)

yuw
yuw + yvw

ytvu =
1

|t(u, v)|
∑

w∈t(u,v)

yvw
yuw + yvw

,
(15)

where t(u, v) is a set with up to γ nodes randomly sampled from
the set of common neighbors of u and v.

The pseudo-labels are leveraged to train the same logistic
regression model in Eq.11. The cross-entropy is used as the
prediction loss and the last loss function Lpattern is defined as
follows:

Lpattern = −
∑
e∈Eu

degtie(e)[(y
t
e log ye + (1− yte) log(1− ye)

+ 1yde>T (y
d
e log ye + (1− yde ) log(1− ye))] ,

(16)

where T is a threshold and 1q is an indicator function defined as:

1q =

{
1 if q is true
0 if q is false

. (17)

In Eq. 16, it can be seen that only the undirected social ties
whose pseudo-labels for the Degree Consistency Pattern are over
a threshold T are taken into consideration. That is because this
pattern is much more significant on social ties with higher degree
difference between the two corresponding nodes. Moreover, for
the same reason in Llabel, when calculating Lpattern on undi-
rected social ties, the ties are given weights which equal to their
tie degrees.

The details of the three loss functions in E-Step are presented
so far, and then we will discuss how to optimize them in the next
subsection.

4.5 Training DeepDirect

4.5.1 Learning the embedding matrix
We combine the three loss functions to obtain the total loss of the
network:

L = Ltopo + αLlabel + βLpattern , (18)

where α and β are two hyper parameters to adjust the weights of
Llabel and Lpattern.

However, Ltopo is a summation on all connected tie pairs,
while Llabel and Lpattern are summations on parts of ties. In
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order to use SGD to minimize L, Llabel and Lpattern are rewritten
according to the equation degtie(e) = |c(e)|:

Llabel = −
∑
e∈Ed

∑
e′∈c(e)

[ye log ye + (1− ye) log(1− ye)]

Lpattern = −
∑
e∈Eu

∑
e′∈c(e)

[(yte log ye + (1− yte) log(1− ye)

+ 1yde>T (y
d
e log ye + (1− yde ) log(1− ye))] .

(19)

Thus, for a sampled connected tie pair (e, e′), its loss L′ is
obtained as:

L′ = −[log σ(me · ne′) +
λ∑
i=1

Eei∼Pn(e)(log σ(−me · nei))]

−1e∈Ed · α[ye log ye + (1− ye) log(1− ye)]
−1e∈Eu · β[1{yde>T}(y

d
e log ye + (1− yde ) log(1− ye))

+ (yte log ye + (1− yte) log(1− ye))] .
(20)

We use SGD to minimize L′, and the partial derivative of
variables is as follows:

∂L′

∂b′
=1e∈Edα(σ(w

′ ·me + b′)− ye)

+ 1e∈Eu1yde>Tβ(σ(w
′ ·me + b′)− yde )

+ 1e∈Euβ(σ(w
′ ·me + b′)− yte) , (21)

∂L′

∂w′
=
∂L′

∂b′
me , (22)

∂L′

∂me
=(σ(me · ne′)− 1)ne′ +

λ∑
i=1

(σ(me · nei))nei

+
∂L′

∂b′
w , (23)

∂L′

∂ne′
=(σ(me · ne′)− 1)me , (24)

∂L′

∂nei
=(σ(me · nei))me . (25)

To save unnecessary memory space, we do not generate all
the connected tie pairs, i.e., C(G), but adopt a simple sampling
strategy. First a tie e is drawn from E with the distribution Pc(f)
(Pc(f) ∝ degtie(f)), and then a tie e′ is drawn from c(e)
with the uniform distribution. Thus, the sampled tie pair (e, e′)
is obtained for training with SGD.

4.5.2 Learning the directionality function

As discussed in Sec. 4.1, the directionality function is modeled
with a logistic regression LR.

d(e) = σ(w ·me + b) (26)

After E-Step, the embedding matrix M is obtained. Then the
embedding vectors corresponding to directed social ties (ties in
Ed) and labels of them are used to form the training data for LR.
To initialize the parameters of LR, we set w and b equal to w′ and
b′, respectively. At last, LR is trained on those training data with
the L2 regularization.

Algorithm 1 Learning the directionality function with DeepDirect
Require:

A mixed social network G = (V,E), where E = Ed
⋃
Eb

⋃
Eu, the

dimension number l, the iteration number τ , and other hyper parameters
α, β, λ, γ.

Ensure:
The embedding matrix M , the parameters of LR, i.e., w and b.

1: /*Preprocessing social ties*/
2: for all (u, v) ∈ Ed do
3: Ed = Ed

⋃
{(v, u)}

4: yuv = 1, yvu = 0
5: end for
6: for all (u, v) ∈ Eu do
7: Calculate yduv with Eq. 14.
8: Generate t(u, v) through randomly selecting at most γ common neigh-

bors of u and v.
9: end for

10: /*E-Step*/
11: Initialize M , N , w′ and b′.
12: repeat
13: Sample a tie e from E according to Pc, and randomly select a tie e′

which is connected to e.
14: Sample λ negative ties from E according to Pn.
15: Update the embedding matrix M with Eq. 23.
16: Update the connection matrix N with Eq. 24 and Eq. 25.
17: Update w′ and b′ with Eq. 22 and Eq. 21.
18: until Reach τ |C(G)| iterations
19: /*D-Step*/
20: w = w′, b = b′

21: Learning w and b through training the logistic regression model LR.
22: return M , w and b.

4.6 Algorithm analysis
In this subsection, the complete algorithm and the analysis of its
time complexity are presented.

Algorithm 1 shows the details of the algorithm which learns
the directionality function with DeepDirect.

The input of the algorithm is the given mixed social network
G, and all the hyper parameters. The output of this algorithm is
the embedding matrix M and the learned parameters w as well
as b of LR. Thus, for a given tie e, the value of the directionality
function d(e) can be calculated with Eq. 26.

In the algorithm, we first preprocess parts of the social ties
in the network. For each directed social tie (u, v) ∈ Ed, a tie
(v, u) is added into Ed, and their labels are recorded (Lines 2 –
5). For each undirected social tie (u, v) ∈ Eu, we calculate one
of its pseudo-labels yduv and generate the set t(u, v) for it, which
consists of up to γ randomly selected common neighbors of u and
v (Lines 6 – 9).

Next, the embedding matrix is learned. The embedding matrix
M , the connection matrix N , and the parameters w′ and b′ are
initialized (Line 11). We repeat τ |C(G)| iterations, where |C(G)|
is the number of all the connected tie pairs. In each iteration, we
sample a connected tie pair (e, e′) with the strategy proposed in
Sec. 4.5, draw λ negative ties for (e, e′), and update M , N , w′

and b′ with the update rules in Eqs. 21 –25 (Lines 13 – 17).
Then, D-Step is executed as discussed in Sec. 4.5.2. Pa-

rameters w and b are initialized with the values of w′ and b′,
respectively (Line 20). After that, LR is trained with labeled ties
(Line 21).

At last, the embedding matrix M and the parameters w as well
as b are returned (Line 22).

Now we discuss the time complexity of Algorithm 1. The time
cost of this algorithm consists of three parts, i.e., the time cost of
preprocessing, the time cost of E-Step and that of D-Step. Thus,
we have

T = Tpre + TE + TD. (27)
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Obviously, the preprocessing step costs O(|Ed| + γ|Eu|) time.
The time cost of E-Step can be seen as t × τC(G), where t is
the time cost of one iteration. It can be found that t = O(λ ×
l). Moreover, because the social networks are sparse, we have
C(G) = C × |E|, where C is a constant number. Thus, TE =
O(λ × l × C × |E|) = O(|E|). As for TD , it is known that the
time cost of training the logistic regression is O(|Ed|).

Finally, the time complexity of Algorithm 1 is O(|E|), which
means the runtime of our algorithm should be linear to the number
of social ties in a given mixed social network.

5 APPLICATIONS

In this section, two applications respectively corresponding to the
two real requirements discussed in Sec. 1 are discussed.

5.1 Direction discovery on undirected ties
The first application is to discover the directions of undirected ties
in the set Eu with the directionality function. For an undirected
social tie (u, v), its direction can be predicted by comparing the
two directionality function values w.r.t. it:

Direction of (u, v) :
{
u→ v if d(u, v) ≥ d(v, u)
v → u if d(v, u) > d(u, v)

. (28)

5.2 Direction quantification on bidirectional ties
Another application of the directionality function is to quantize the
directionality of bidirectional ties. For a bidirectional social tie,
we argue that the two directions of this tie are not always equal,
i.e., one of the directions may be stronger. Thus, how to quantize
these two directions of a bidirectional tie is worth studying. Our
directionality function can help with the direction quantification
on bidirectional social ties.

The adjacency matrix is a widely used tool to represent the
topology of a network. For a bidirectional tie (u, v), it corresponds
to two cells Auv and Avu (supposing the adjacency matrix is A)
with value ‘1’. We think that d(u, v) and d(v, u) are better than
the value of ‘1’ to quantitatively describe this social tie, if the
directionality function d has been learned. Thus, through replacing
the values of the cells corresponding to bidirectional ties with
the directionality function values, we obtain a new matrix, called
the directionality adjacency matrix. The directionality adjacency
matrix is the result of direction quantification on bidirectional ties,
and it can help with a lot of tasks based on the adjacency matrix,
e.g., link prediction in directed social networks.

6 EXPERIMENTS

In this section, the experimental results conducted on five real-
world data sets are reported. Our methods are compared with
some baselines in learning the directionality function. However,
it is hard to judge whether a learned directionality function is
good. Thus, the performance of the two tasks introduced in Sec. 5,
which are based on the directionality function, is measured to
infer the effect of the learned directionality functions. Sec. 6.1,
shows our experimental settings, including the data sets and the
baseline methods. In Sec. 6.2, experiments about the task of
direction discovery on undirected ties are conducted. We compare
our methods with baselines to show that DeepDirect outperforms
all the other methods, find out the effectiveness of the supervision

TABLE 2
Data sets

Data sets Nodes Ties
Twitter 65,044 526,296

LiveJournal 80,000 1,894,724
Epinions 75,879 508,837
Slashdot 77,360 905,468
Tencent 75,000 705,864

and the directionality patterns in the DeepDirect model, and study
the parameter sensitivity of DeepDirect. Sec. 6.3 shows how to
leverage the directionality function to improve the analysis tasks
on bidirectional social ties. At last, the scalability of DeepDirect
is studied in Sec. 6.4.

6.1 Experimental Settings

In our experiments, data sets are collected from five real social
networks: Twitter, LiveJournal, Epinions, Slashdot and Tencent
[10]. Since these networks are all large and sparse, we sample sub-
networks from them through breadth-first traversal, and let each
subnetwork contain 65, 000 − 80, 000 nodes, which follows the
preprocessing of data sets in [10]. The details of these subnetworks
are shown in Table 2.

The following methods are employed to learn the directionality
function.
• LINE [17]: It is a state-of-the-art graph embedding method,

which maps the nodes of a network to low-dimensional
vectors considering both the first-order and the second-order
proximities of nodes. We first generate vectors for each
individual with LINE. Then, for each social tie, the two
vectors corresponding to the source node and the target node
are concatenated as its feature vector.

• HF: It employs the handcrafted features proposed in Sec. 3,
i.e., node degree features, node centrality features and di-
rected triad count features, to form feature vectors for social
ties.

• DeepDirect: It is the directionality learning model with edge-
based network embedding we proposed in Sec. 4, which maps
all the social ties into a low-dimensional space considering
the topology information of network, the labeled data and the
directionality patterns.

• ReDirect-N/sm [10]: This is the semi-supervised variant of
ReDirect-N [10], which can make use of labeled data. It
represents each node i with two latent vectors, denoted as
hi and h′i, and takes the inner product of hi and h′j as the
directionality value of the social tie (i, j). ReDirect-N/sm
leverages four directionality patterns to propagate the label
information across the whole network to learn the latent
vectors for each nodes.

• ReDirect-T/sm [10]: Similar to ReDirect-N/sm, this is the
semi supervised variant of ReDirect-T, which is tie-centroid
and different from the node-centroid method ReDirect-N.
ReDirect-T/sm starts with known directionality values of
the labeled data as well as randomly initialized directionality
values of other social ties. It updates the directionality value
for each unlabeled social tie through the directionality values
of its neighbors based on the four directionality patterns in
iterations. When it converges, the directionality value for each
social tie is learned.
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Fig. 3. Accuracy of direction discovery on five data sets. DeepDirect outperforms all the other methods on all the data sets no matter how many
directed social ties are employed.

The first three methods, i.e., a baseline method LINE and our
proposed methods HF and DeepDirect, generate feature vectors
for social ties in different ways and learn the directionality with
the logistic regression model based on the features. As for the last
two methods, i.e., Redirect-N/sm and Redirect-T/sm, they do not
learn the directionality function of the given network, but directly
learn the directionality value of each social ties in the network.

For our proposed DeepDirect, we set the negative sample
number λ = 5, the iteration number τ = 10 and the dimension
number l = 128. As for the hyper parameters α and β, which
balances the effect of the three loss functions in E-Step, we use
the grid search with cross-validation to determine the optimal
values. For LINE, we set the dimension number l = 64, which
is the half of that in DeepDirect, since we need to concatenate
the embedding vectors of source/target nodes to present an edge.
For ReDirect-N/sm, the dimension number Z is set to 40, which
is the optimal considering the trade-off between time cost and
performance. Other parameters of baselines are all set following
the corresponding papers.

6.2 Direction Discovery on Undirected Ties
In this subsection, plenty of experiments about direction discovery
on undirected ties are conducted.

In our data sets, there are directed social ties and bidirectional
ties, but no undirected ones. Therefore, we hide the directions of
a part of directed social ties randomly to generate mixed social
networks. These social ties are regarded as undirected ties in
Eu, and the remaining directed social ties form the set Ed. The
five directionality function learning methods introduced above
are employed to learn the directionality functions for networks,
and the learned functions are used to predict the directions of
undirected ties in Eu through the approach mentioned in Sec. 5.1.

We measure the performance of a method based on the prediction
accuracy, i.e., the fraction of ties in the entire set Eu whose
directions are predicted correctly.

First, our methods are compared with all the baselines in
Sec. 6.2.1, and the results show that DeepDirect outperforms
all the other methods. Next, for the DeepDirect model, the
effectiveness of the supervision on labeled data is discussed
in Sec. 6.2.2, and the effectiveness of directionality patterns is
studied in Sec. 6.2.3. Then, some experiments shows the parameter
sensitivity of DeepDirect in Sec. 6.2.4. At last, the visualization
of embedding results of DeepDirect compared with LINE is
demonstrated in Sec. 6.2.5, which shows that embedding vectors
generated by DeepDirect are more discriminative for directional-
ity of social ties.

6.2.1 Comparisons among all the methods.
In this part, we aim to find out the effect of different directionality
function learning algorithms on the task of direction discovery.
The experiments are conducted on all the data sets with different
percentages of ties that remain directed, i.e., |Ed|/(|Ed|+ |Eu|).

Fig. 3 demonstrates the experimental results. It can be seen that
DeepDirect outperforms all the other methods on all the data sets
no matter how many directed social ties are employed. This means
DeepDirect learns the directionality function well, and the learned
directionality function can be used to discover the directions of
undirected ties effectively. Redirect-N/sm and Redirect-T/sm are
in the second tier in the experiments. LINE and HF are the worst
on almost all the data sets among all the methods.

HF cannot achieve good performance because of the way it
generates feature vectors. It extracts features for each social tie
through calculating some statistical values of this tie, such as
degrees and centralities. However, this approach ignores the con-
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Fig. 4. Effectiveness of labeled data in E-Step. The results show that introducing the labeled data and considering the prediction loss on them is
really effective for the E-Step of DeepDirect.

nection between social ties, which means the topology information
of the network is not well utilized. The feature vectors extracted
by HF contain little topology information, and thus HF cannot
learn a good directionality function of a given network.

LINE embeds the networks into low-dimensional spaces with
topology information preserved, which is similar to the E-Step
of DeepDirect, but it has worse performance in this experiment
compared with DeepDirect. The difference between them is that
LINE is node-based while DeepDirect is edge-based. LINE learns
the embedding vectors for all the nodes through preserving the
first-order and the second-order proximities among nodes. Thus,
given a social tie (u, v), we need to concatenate the embedding
vectors corresponding to u and v to form the embedding vector
for (u, v), since there are no other proper approaches. Under
this approach, the embedding features of ties (u, v) and (u,w)
would have the same first half, and that is how LINE models the
relation of connected social tie pairs in an indirect way. However,
the approach we proposed in Sec. 4.2, which is based on the
conditional probability that a tie is the connected tie of another tie,
models this relation better and more directly. Moreover, besides
the topology information, the E-Step of DeepDirect also utilizes
the label information and the directionality patterns to learn the
edge embedding vectors. Therefore, DeepDirect achieves much
better performance than LINE in experiments.

As for ReDirect-N/sm and ReDirect-T/sm, we can see that
the relationship of their performance is not stable on different data
sets, which is pointed out in [10]. Specifically, on LiveJournal and
Epinions, ReDirect-T/sm outperforms ReDirect-N/sm, while on
the other three data sets, Redirect-N/sm performs better. However,
DeepDirect always outperforms both of them on all the data
sets. They are both the semi-supervised variant of a unsupervised
method, and thus, they are based on the four directionality patterns

obtained from observation, and the label information is only
considered as the supplement. Thus, if a social network is not
very consistent with those patterns, the performance of ReDirect-
N/sm and ReDirect-T/sm will be poor. Unlike them, DeepDirect
is designed for the supervised task, i.e., TDL, and the directionality
patterns are only supplements when there are few labeled data.
Even the network is not consistent with the patterns, DeepDirect
still could learn the directionality function well through embed-
ding the network with topology information and label information.
That is why DeepDirect always outperforms ReDirect-N/sm and
ReDirect-T/sm.

The success of DeepDirect means the embedding result of
the E-Step is effective. Therefore, the effectiveness of the loss
functions used in the E-Step and the parameter sensitivity will be
studied in the following.

6.2.2 Effectiveness of labeled data in E-Step
First, the effectiveness of the loss function Llabel is discussed in
this part. As we know, Llabel represents the loss of predicting the
directions on directed ties and the parameter α adjusts the contri-
bution of Llabel to the total loss L (Eq. 18). In this experiment,
we set β = 0 to remove the effect of Lpattern, and adjust the
value of α to test how it affects the performance of DeepDirect.
This experiment is conducted on the five data sets with different
percentage of ties that remain directed, i.e., labeled ties.

The result is shown in Fig. 4. It is obvious that the performance
of DeepDirect when α > 0 is always better than that when α = 0,
e.g., the accuracy on Tencent is less than 0.6 when α = 0 and
it significantly grows to about 0.8 when we set α = 0.1. This
means introducing the labeled data and considering the prediction
loss on them is really effective for the E-Step of DeepDirect.
Besides, it can be found that in most cases 5 seems the optimal
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Fig. 5. Effectiveness of directionality patterns in E-Step. The results demonstrate that utilizing directionality patterns when there are few labeled
data is effective to improve the performance of DeepDirect

value for α compared with 1 and 0.1, which suggests a higher
weight for Llabel may bring the increase of the performance of
DeepDirect. However, it is worth noting that the parameter α
should be carefully increased, because the partial derivative of w′

b′ and me will all grow with α according to Eqs. 21 – 23. If we
assign α a large value, we will have to employ a small learning
rate to prevent the potential loss explosion, which means a long
convergence time.

6.2.3 Effectiveness of directionality patterns in E-Step
Next, the effectiveness of the directionality patterns, i.e., Lpattern
in E-Step, is demonstrated through experimental results. Because
the directionality patterns are utilized as the supplement when
there are few labeled data, i.e., directed social ties, in the network,
we set the percentage of ties that remain directed under 15% in
this experiment for all the data sets. We set six groups of values for
α and β in this experiment. The first three groups (α = 0 β = 0,
α = 0 β = 0.1, and α = 0 β = 1) are used to demonstrate the
effectiveness of directionality patterns when Llabel is not used.
The last three groups (α = 5 β = 0, α = 5 β = 0.1, and
α = 5 β = 1) are used to study the effectiveness of directionality
patterns with Llabel being considered.

As shown in Fig. 5, it is obvious that introducing Lpattern
always makes the performance better in this experiment, no matter
whether Llabel is used. Moreover, the improvement caused by
Lpattern is more significant when there are fewer ties that remain
directed. For all the data sets, the best performances are achieved
when both Llabel and Lpattern contribute to E-Step, i.e. α > 0
and β > 0.

There is an interesting fact on Epinions that introducing
labeled data in E-Step (i.e., α = 5, β = 0) decreases the
accuracy when the percentage of ties that remain directed is 0.01.

In our opinion, without Llabel and Lpattern DeepDirect can
perform well in this case. But introducing Llabel with few labeled
ties causes overfitting, and thus, the performance of DeepDirect
decreases. Then the overfitting is eliminated when we set β > 0,
because some pseudo-labels are generated as supplements of real
labels. Therefore, this kind of overfitting can be avoided when
DeepDirect works correctly (both α > 0 and β > 0).

As a conclusion, utilizing directionality patterns when there
are few labeled data is effective to improve the performance of
DeepDirect.

6.2.4 Parameter sensitivity
Here, the parameter sensitivity of DeepDirect is studied. Actually,
the effect of parameters α and β are shown in Sec. 6.2.2 and
Sec. 6.2.3, and thus only the number of dimensions l and the
number of negative samples λ are discussed in this part. The
experiment is conducted on all the five data sets with 20% directed
social ties.

The results in Fig. 6(a) demonstrate that when l increases the
performance gets better in most cases. However, this increment
is not very significantly, and it is worth noting that the time
complexity of E-Step is almost linear with l. Therefore, we should
balance the performance and the time cost when choosing l, and
it seems that 128 is the optimal value for l in our task through the
experimental results.

Fig. 6(b) shows the variation of the accuracy of DeepDirect
with the change of λ. It is obvious that when λ = 5 or λ = 10,
DeepDirect achieves a better performance than that when λ = 1.
However, the case when λ = 3 is more complicated. On Epinions
and Slashdot, the performance when λ = 3 is almost the same as
that when λ = 5 or λ = 10, while on the other three data sets, it
is even worse than that when λ = 1. For a similar reason with l,
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Fig. 7. Visualization of embedding results on a sub-network of Slashdot.
The visualization result with DeepDirect is much more meaningful and
discriminative than that with LINE.

5 is the optimal value for λ considering both the performance and
the time cost.

6.2.5 Visualization of embedding results
In Sec. 6.2.1, we have discussed that DeepDirect embeds the
social ties of a given network much better than LINE, because
it directly models the connection between social ties. In this part,
a network extracted from the data set Slashdot is visualized to
show the difference of the embedding results of DeepDiect and
LINE.

The nodes with top 1% degrees of Slashdot are selected, and
the social ties among them are kept to form a new network. In this
new network, we hide the directionality of 90% of the directed
social ties and treat them as undirected ties, and thus we obtain a
mixed social network. Both DeepDirect and LINE are employed
to embed this mixed social network, and the embedding vectors for
the undirected ties are obtained. Then these embedding vectors are
transformed to 2D points through t-SNE [21], and these 2D points
are visualized according to the actual directions of corresponding
social ties. For a social tie (u, v) whose direction is hidden during
embedding, the 2D point corresponding to it is marked in red if u
is the actual source node, and is marked in blue if v is the actual
source node.

Fig. 7 compares the visualization results of DeepDirect and
LINE. It can be seen that the points of different colors in Fig. 7(a)
are separable and those in Fig. 7(b) seem totally mixed, which
means the visualization with DeepDirect is much more mean-
ingful and discriminative than that with LINE. The visualization

results intuitively show that the embedding vectors for social
ties obtained through DeepDirect are more appropriate for our
direction discovery task.

6.3 Direction Quantification on Bidirectional Ties

As discussed in Sec. 5.2, the direction information of bidirectional
social ties can be quantitatively described with the directionality
function. Through replacing the values of the cells corresponding
to bidirectional ties with the directionality function values, the
directionality adjacency matrix can be obtained. The directionality
adjacency matrix could benefit many tasks which are based on the
adjacency matrix. Here, we take a popular predictive task, link
prediction, as an example to show this benefit.

The goal of link prediction is to predict whether there will be a
newly formed social tie between two given individuals. A simple
but effective method is based on the Jaccard Coefficient:

fJaccard(u→ v) =
sum(Ai,: ·A:,j)

sum(Ai,:) + sum(A:,j)
(29)

where A represents the adjacency matrix. Individual pairs with
higher Jaccard Coefficient are believed to have a higher chance to
be friends.

For a data set G, all the individuals and 80% of social ties
are extracted to form a new network G′. When conducting link
prediction experiments on G′ through Jaccard Coefficient, we test
on all the 2-hop neighbors in G′. Specifically, those connected in
G are considered as positive samples while others are regarded as
negative ones.

In this experiment, three data sets are used: LiveJournal,
Epinions and Slashdot, because over 50% social ties in them
are bidirectional. We build the directionality adjacency matrices
with directionality functions learned by the five algorithms, and
compare them together with the original adjacency matrix in the
link prediction task based on Jaccard Coefficient. The performance
of link prediction is measured with Area Under the ROC Curve
(AUC), and the results are shown in Fig. 8.

From the result, we can conclude that: First, the performance
of link prediction is improved after we employ the directionality
adjacency matrices, which means our idea that quantizing the
bidirectional ties through the directionality function is effective;
Second, DeepDirect outperforms the others in this task, just like
the task in Sec. 6.2.
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Fig. 8. AUC of link prediction on three data sets.

6.4 Scalability
At last, this subsection studies the scalability of DeepDirect. In
Sec. 4.6, we have analyzed that the time complexity of DeepDirect
is linear with the number of social ties in the network. In this
experiment, we sample sub-networks from Tencent with different
number of social ties through a BFS process, run DeepDirect on
these sub-networks, and record the time cost.

As shown in Fig. 9, the time cost of DeepDirect is always
linear with the number of social ties in sub-networks. Therefore,
DeepDirect has a good scalability.

7 RELATED WORK

In this section, we survey some lines of study that are related to
our work.

Attributes of social ties. The study on attributes of social
ties has attracted much attention in recent years. Social ties are
classified into two categories, i.e., strong ones and weak ones
in [3] and [4], while the strength of social ties is measured
in a quantitative way in [22], [23] and [24]. There are also
some work ([5], [6] and [7]) which study the tie sign prediction
problem on signed social networks, e.g., Epinions, whose users
can express trust or distrust of others. However, the directionality
of social ties is studied rarely. The most related work to ours
is [10], which considers that the directions of social ties are
existing but hidden in undirected social networks, and proposes
an unsupervised framework, ReDirect, to recover the directions in
undirected networks.

Deep learning. Deep learning is a representation-learning
method with multiple levels of representation [25]. The most
popular deep models are the convolution neuron network (CNN)
[26] and the recurrent neural network (RNN) . CNNs are proven
extremely effective in processing images [27], audio, and video,
while RNNs have an advantage on sequential data such as text
and speech. In this paper, our embedding method borrows the
idea of the skip-gram model [20], a famous deep model for word
embedding, to learn the representation of social ties.

Graph embedding. There exist some classical graph embed-
ding approaches based on dimensionality reduction of Laplacian
or the adjacency matrices, such as LLE [28], IsoMAP [29] and
Laplacian Eigenmaps [30]. However, these methods suffer from
heavy computation cost and performance drawbacks.

Almost all the recent graph embedding methods utilize deep
learning techniques, because deep learning is very good at repre-
sentation learning and graph embedding can be seen as the graph
representation learning. There are two major categories of recent
graph embedding methods based on deep learning.

The first category, e.g., SAE [13], DNR [14], and SDNE [31],
uses the deep autoencoder to transform the raw vectors for nodes
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Fig. 9. Scalability of DeepDirect.

(which can be columns of adjacency matrix, Laplacian matrix,
modularity matrix, etc.) to low-dimensional embedding vectors
non-linearly, and the model is optimized through minimizing the
reconstruction error w.r.t. embedding vectors.

The second category of graph embedding methods, such as
DeepWalk [15], Node2vec [16], LINE [17] and GraRep [32],
borrows the idea of word2vec [20], which is a famous deep
learning method to solve the word embedding problem in natural
language processing area. It considers the neighbor relations be-
tween nodes as the co-occurrence relations between words, defines
a conditional probability (similar to word2vec) to model the
neighbor relations, and estimates the embedding vectors through
maximizing the log-likelihood of the whole graph.

Besides, Xu et al. [33] focus on the coupled heterogeneous
network consisting of two different but related sub-networks
connected by some inter-network edges. They propose a method
named embedding of embedding (EOE) for jointly embedding the
coupled network.

However, all the existing graph embedding models are node-
based, which means they map the nodes to low-dimensional
vectors. Our proposed model, DeepDirect, learns the edge rep-
resentations.

8 CONCLUSION AND FUTURE WORK

This paper studies the directionality information of social ties in
directed networks. Firstly, a novel problem named TDL is defined,
which aims to learn the directionality function of a social network.
Next, two methods are proposed to solve the TDL problem. The
first is a simple but effective method which learns the directionality
function based on handcrafted features. In the second method,
named DeepDirect, we first learn the embedding of the network,
and then learn the directionality functions based on the embed-
ding vectors. Then, we introduce how to apply the directionality
function in two real applications, which are direction discovery on
undirected ties and direction quantification on bidirectional ones.
Finally, comprehensive experiments are conducted to evaluate
the effect of our methods through the performance of the two
applications. The experimental results show that our methods are
effective and promising.

This paper does not only propose an effective method for
social tie directionality learning, but also shows a general way
for analysis tasks on social ties. For a prediction task on social
ties, we can first learn the edge-based embedding of the network,
and then use off-the-shelf vector-based machine learning methods
to solve the problem. To learn the the edge-based embedding of
the network, it is effective to combine the network topological



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2877748, IEEE
Transactions on Knowledge and Data Engineering

14

information, labeled data, and a priori knowledge, just like what
we do in DeepDirect.

There are many directions of the future work. Among them
is to leverage transfer learning to improve the performance on
networks with few labeled data. Also, we can try to use a deep
neural network in D-Step to learn a non-linear directionality
function. Moreover, since now the undirected ties are regarded as
directed ties with hidden direction, we can study the possibility
that an undirected tie is actually bidirectional and analyze its
directionality of two directions.
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