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The problem of feature selection has attracted considerable research interest in recent years. Supervised

information is capable of significantly improving the quality of selected features. However, existing supervised

feature selection methods all require that classes in the labeled data (source domain) and unlabeled data

(target domain) to be identical, which may be too restrictive in many cases. In this paper, we consider a

more challenging cross-class setting where the classes in these two domains are related but different, which

has rarely been studied before. We propose a Cross-class Knowledge Transfer Feature Selection (CKTFS)

framework which transfers the cross-class knowledge from the source domain to guide target domain feature

selection. Specifically, high-level descriptions, i.e., attributes, are used as the bridge for knowledge transfer. To

further improve the quality of the selected features, our framework jointly considers the tasks of cross-class

knowledge transfer and feature selection. Experimental results on four benchmark datasets demonstrate the

superiority of the proposed method.
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1 INTRODUCTION
In many real-world applications such as multimedia processing and computer vision, data is

usually represented by high-dimensional features [80] [14]. In practice, high-dimensional data

often contains lots of redundancy and noise, which will result in high computational cost, huge

storage requirements, or even overfitted models [46] [79]. To alleviate this, dimension reduction

techniques are introduced to transform high-dimensional data into a lower dimensional space

while attempting to preserve the characteristics of the original data.
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Fig. 1. The problem of feature selection in a “cross-class” setting and it’s possible solution based on ZSL. (a) In
this setting, the labeled source domain and unlabeled target domain have related but totally different classes;
(b) The average feature selection performance of Random and ESZSL methods (feature number ranges in
[50,100, ..., 500]).

The existing dimension reduction techniques can roughly be sub-divided into two categories:

feature extraction and feature selection. Feature extraction [38] [45] [7] generates new features

by projecting the original higher-dimensional feature space to a lower-dimensional feature space.

Feature selection [24] [62] [78] takes an alternative approach to dimension reduction by locating a

few most relevant features, rather than producing an entirely new set of dimensions. Compared to

feature extraction, feature selection maintains physical meaning of the original features and has

better interpretability. In this study, therefore, we focus on feature selection.

Label information has shown its effectiveness for discriminative feature selection [6] [48]. Nev-

ertheless, supervised feature selection methods often require a large amount of labeled data which

is often costly to obtain. To overcome the scarcity of labeled data, two lines have been widely

exploited. The first line is semi-supervised learning [81] [48] which uses both labeled data (i.e.,

source domain) and unlabeled data (i.e., target domain) to estimate feature importance. The second

line is transfer learning [56] assuming there exists a well-labeled auxiliary source domain whose

data distribution is related to but not the same as the target domain. By reducing the distribution

difference between these two domains, supervised knowledge is transferred from the auxiliary

source domain to guide target domain feature selection [21] [26].

However, all these above-mentioned methods require the classes in the source and target domains

to be identical, while little attention has been paid to a more challenging case where these two

domains have related but different classes, i.e., cross-class case. This case deserves special attention
for two reasons. Firstly, it has many practical applications. As illustrated in Fig. 1(a), in some

uncommon categories such as “otter” and “koala”, it is very difficult to collect labeled data for all

these categories exactly and not miss any category. On the other hand, collecting labeled training

data in some other more common categories, like “cat” and “dog”, is much easier. This motivates

us to consider whether we can “borrow” some supervised knowledge from these well-labeled

common categories to guide the feature selection in those uncommon categories where little label

information exists. Secondly, and more importantly, traditional feature selection methods may

perform poorly in the target domain, due to the lack of supervised information. Moreover, some

supervised methods might even be misled by the supervision information of source domain, due to

the big difference between the source domain and target domain.
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Fig. 2. Illustration of Cross-class Knowledge Transfer Feature Selection: (A) Cross-class Knowledge Transfer;
(B) Target Domain Feature Selection. The main idea behind our approach is that the target domain feature
selection (i.e., part B) should benefit from the cross-class knowledge transfer (i.e., part A).

The major challenge in this problem is how to borrow some knowledge, which is stable across

different classes, from the labeled source domain to the unlabeled target domain. This is also the

primary reason why existing feature selection methods fail to handle the studied problem. Recently,

the idea of Zero-Shot Learning (ZSL) [35] [20], which adopts attributes as an bridge for cross-

class knowledge transfer, has been explored to recognize unseen new classes. This seems to be a

straightforward solution to our problem. To verify this consideration, we conduct an experiment on

four widely used datasets which have attributes and source/target split. Firstly, we use ESZSL [60],

a well-known ZSL method, to infer the “pseudo labels” of target instances. After that, we feed these

pseudo labels to the classical supervised feature selection method LASSO [70], so as to perform

feature selection on target data. Finally, we evaluate the feature selection performance via K-means

clustering. Figure 1(b) shows the clustering performance of ESZSL and Random (i.e., selecting

features randomly), in item of Clustering Accuracy (ACC) [17]. We can evidently conclude the

usefulness of these pseudo labels, although the classification of ESZSL is actually very inaccurate

(it’s classification accuracies on these four datasets range in [15% ∼ 69%], and more details can be

found in Section 7).

An attendant problem is how to select more discriminative features with the cross-class trans-

ferred knowledge which might be quite noisy and inaccurate [35]. To address this, as illustrated in

Fig. 2, we further force these pseudo labels to fit the manifold structure of target data, so as to guide

feature selection in this domain. As such, our method not only utilizes the supervised knowledge

of source data, but also captures the intrinsic structure of target data. Intuitively, by adopting

attributes as well as pseudo labels, we connect the tasks of cross-class knowledge transfer and

feature selection. In addition, we jointly consider these two tasks in a unified framework for more

effective and accurate learning. Finally, we derive an effective algorithm to solve the optimization

problem of the proposed framework.

We evaluate the performance of our method on several real-world benchmark datasets. One

point should be noted is that the class-attribute descriptions of a dataset named CIFAR10 are

automatically generated from a public Wikipedia text-corpus [65] by a well-known NLP tool [29].
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The experimental results show that no matter with manually or automatically annotated attributes,

our method can be an effective way to “borrow” cross-class knowledge to promote feature selection.

We highlight the contributions of this paper as follows.

• We study a challenging and practical problem: feature selection when the source and target

domains have related but totally different classes. To our best knowledge, this is the first

attempt to enhance feature selection by transferring knowledge from other different classes.

• We propose a novel feature selection framework CKTFS, which jointly considers the tasks of

cross-class knowledge transfer and target domain feature selection. An efficient algorithm is

further proposed for the optimization problem of CKTFS.

• We conduct extensive experiments on four benchmark datasets to demonstrate the effective-

ness of the proposed method.

The remainder of this paper is organized as follows. Section 2 reviews some related work. In

Section 3, we elaborate our framework with details. To solve the optimization issue in the proposed

framework, an an effective optimization approach together with its time complexity analysis is

given in Section 4. In Section 5, we discuss possible extensions of our framework. Section 6 analyses

the relationship between some existing feature selection methods and ours. Section 7 reports

experimental results. Section 8 concludes this paper with future work.

2 RELATEDWORK
In this section, we briefly review three related lines of research, and highlight the difference between

these works and ours.

2.1 Feature Selection
Suppose the whole dataset contains a fully labeled part (source domain) and an unlabeled part

(target domain). With regard to how to use these two domains, feature selection methods fall into

three groups: unsupervised, supervised, and semi-supervised feature selection methods. When the

labeled source domain is not provided, feature selection methods are unsupervised. They select

features which best keep the intrinsic structure of target data according to various criteria, such as

data variance [9], data similarity [25] [53] and data separability [5] [42]. To further select more

discriminative features, some unsupervised methods [28] [43] propose to learn pseudo labels (i.e.,

cluster indicators) and perform feature selection simultaneously.

Supervised feature selection methods seek features that are efficient for discrimination in the

labeled source domain. Classical methods, such as Pearson Correlation Coefficient [40] and Fisher

Score [16], evaluate features’ weights according to labels and select features one by one. To further

exploit the correlation among features [67], lots of sparsity-based feature selection methods are

proposed. One of the most famous method is LASSO [70] which selects features by constraining the

ℓ1-norm of weights. Besides, another sparsity regularization model ℓ2,1-norm has gained increasing

interest for its sparsity, joint selection way and ability to exploit the pairwise correlation among

features. For example, [52] adds ℓ2,1-norm on both learned regression model and regularization term

(for feature selection). [84] embeds classifier learning with subspace learning, and adds ℓ2,1-norm
regularization term (for feature selection).

Extended from unsupervised and supervised feature selection methods, semi-supervised methods

consider both source and target domains for feature selection. For example, [48] fully explores the

distribution of the labeled and unlabeled data with a label propagation method, and then selects

top features based on the noise insensitive trace ratio criterion. [74] proposes a semi-supervised

multi-label feature selection method which jointly utilizes the label correlations and exploits data

structure by manifold learning.

ACM Trans. Knowl. Discov. Data., Vol. 1, No. 1, Article 1. Publication date: January 2019.



Feature Selection via Transferring Knowledge Across Different Classes 1:5

All the above mentioned methods do not consider the case where the source domain and target

domain have totally different classes. In this paper, we propose to transfer cross-class knowledge

from source domain to generate pseudo labels for target domain feature selection. Note that,

although some unsupervised methods [28] [43] also propose to learn pseudo labels, their methods

are substantially different from ours. Specifically, in these methods, pseudo labels are learned by

exploiting the cluster analysis on the target data, i.e., they do not consider the knowledge of source

domain. Conversely, in our method, pseudo labels are generated, via attributes as the bridge, by

transferring knowledge from the source domain to target domain. In addition, we further force the

generated pseudo labels to preserve the manifold structure of target data, so as to guide feature

selection in this domain.

2.2 Transfer Learning for Feature Selection
Transfer learning, also known as learning to learn [36], or inductive transfer [8] [58], has the

goal to transfer the knowledge learned in previous source domain to the target domain whose

data distribution is similar but different from source domain. One of the most important transfer

strategies is the feature-representation-based-transfer approach. Its basic idea is to employ feature

extraction or selection methods to learn a “good” feature representation to reduce the distribution

difference between source and target domains. For example, [10] and [55] reduce this difference

by learning a common feature extraction strategy. Uguroglu et al. [71] reduce this difference by

selecting distribution invariant features across domains.

To overcome the scarcity of labeled data, some feature selection methods also consider transfer

learning. Bi et al. [2] compute “confidence” scores for source domain instances according to their

feature distribution difference with target ones, and use high-confidence ones to enrich the target

domain’s training set for feature selection. In the word sense disambiguation task, Dhillon et al. [13]

improve feature selection performance by introducing feature relevance prior inferred from other

“similar” word senses. Helleputte et al. [26] further incorporate this prior into an optimization

framework for feature selection. Fukumoto et al. [21] consider the impact of temporal effects for

transfer learning based feature selection.

However, these transfer learning based feature selection methods still require that classes in

source and target domains to be identical, i.e., they cannot transfer knowledge from other different

classes for feature selection. Besides, unlike these transfer learning based feature selection methods

which transfer knowledge by reducing the distribution difference between source and target

domains, we utilize attributes as a bridge to transfer knowledge from source domain to guide target

domain feature selection.

2.3 Attribute-based Zero Shot Learning
Attribute-based Zero Shot Learning (ZSL) [35] [20] shares the same aim with transfer learning,

i.e., applying the knowledge learned from source domain to target domain. The main difference is

that: in ZSL, the classes in source and target domains are different. In other words, ZSL transfers

knowledge across different classes. To achieve this goal, it uses some high-level descriptions shared

among the classes in these two domains, i.e., attributes, as the bridge for knowledge transfer.

Generally speaking, there are two ways to generate attributes. On the one hand, we can manually

describe each class by a list of pre-defined attributes. Take the animals in Fig. 2 as an example,

possible attributes may include “has wing”, “can climb” or “is black”. On the other hand, since class

labels are usually semantic meaningful (like “cat” and “dog”), we can automatically generate their

semantic embedding vectors as attributes. More concretely, we can first collect some linguistic

resources (like Wikipedia corpus). Then we can use some word embedding NLP tools (such as

word2vec [51] or Huang’s method [29]) to embed all the words (including those classes labels)
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into a latent space, where the proximity between points in space indicates semantic proximity.

Intuitively, in this embedded space, each dimension can be seen a “latent” attribute which reflects

the semantic relationship among different classes.

Recently, various ZSL methods have been proposed, such as attribute-based methods [35] [30]

and similarity-based methods [59] [54]. However, all these methods are limited to classification

or prediction scenario. To our best knowledge, this is the first attempt to utilize the knowledge

transferred from other different classes to promote feature selection.

3 THE PROPOSED METHOD
In this section, we first introduce some notations used throughout this paper. Then, we describe

the formulation of our Cross-class Knowledge Transfer Feature Selection (CKTFS) framework.

After that, we provide an effective solution to address the optimization issue of CKTFS. Finally, we

analyse the computational complexity of the optimization method.

3.1 Problem Definition and Discussion
3.1.1 Problem Definition. We have a source domain Ds and a target domain Dt . In the source

domain Ds , there is a set of source instances Xs={x
s
1
, ...,xsns }, where x

s
i ∈ Rd is the feature vector.

We assume that all source instances are labeled: the class set is Cs={C
s
1
, ...,Cs

cs } and the label

information is Ys = {ys
1
, ...,ysns } where y

s
i ∈ {0, 1}cs is the label vector. In addition, in this paper, we

only consider the multi-class single-label case, i.e., there is only one “1” in each ysi and the others

are all “0”.

In the target domain Dt , there is a set of target instances Xt={x
t
1
, ...,x tnt }, where x

t
i ∈ Rd is

the feature vector
1
. The class set of this domain is Ct={C

t
1
, ...,Ct

ct }, but we do not know its label

information Yt = {yt
1
, ...,ytnt } where y

t
j ∈ {0, 1}ct is the label vector. Our goal is to select a subset

of most discriminative features in this domain. Different from the traditional supervised feature

selection setting Cs=Ct , this paper considers a more practical and challenging case (i.e., cross-class
case) where the source and target classes are disjoint: Cs ∩ Ct=∅.

In addition, for each class in Cs ∪Ct , there are a attributes describing its high-level characteristics.
In this way, for domainDs andDt , we can get two Class-Attributes matrices Ss∈R

a,cs
and St∈R

a,ct
,

respectively. These two matrices may contain boolean entries, when classes are described by a

combination of attributes, or more generally, they may contain for each attribute any value in [0,1]

providing a soft link between attributes and classes. For clarity, we summarize these notations in

Table 1.

Finally, having all aforementioned notations, we can formally define the concerned problem

studied in this paper as follows:

Problem 1 (Cross-class Feature Selection, CCFS). Given a labeled source domainDs=(Xs , Ss ,Ys )
and an unlabeled target domain Dt=(Xt , St ) where the classes in Ds and Dt are totally different, our
goal is to utilize the supervision knowledge of Ds to improve the feature selection task in Dt .

3.1.2 Problem Discussion. We discuss the practical significance of the CCFS problem (defined in

Problem 1) in which two observations are available. The first observation is that all the classes

in the target domain have no labeled instances. This has practical implications for two reasons.

Firstly, and actually, there are few labeled instances in most of the real-world categories [18].

This is reflected in the image number per category, available for training in several large object

1
Here, following the general setting of feature selection and ZSL studies, we assume source and target instances are all in

the same feature space Rd . In other words, source and target instances are pre-processed by the same feature extraction

tools (e.g., SIFT [49] and AlexNet [34]). This is a common assumption in the literature, because it is convenient to use the

same feature extraction methods or tools for data pre-processing [19] [32].
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Table 1. NOTATIONS

Symbol Description

Ds , Dt source and target domains

Xs , Xt source and target instances

Ys , Yt label matrix of source and target instances

Ss , St attribute matrix of source and target classes

Cs , Ct source and target class set

ns , nt #source instances and #target instances

cs , ct #source classes and #target classes

a #attributes for describing different classes

h(Ss ), h(St ) classifier derived from attribute matrix of source and target classes

h the derivation function

datasets (like ImageNet [11]), shows a Zipf distribution [63]. Moreover, in light of the knowledge

explosion, this situation would become worse with the rapid growth of newly-emerging concepts

and multimedia data (like the newly invented product “quadrotor”).

The second observation is that the class-attribute descriptions of source and target classes

are provided. Actually, this would make our method more applicable in practice. Comparing to

collecting labeled data, collecting class-attribute descriptions is easier. On the one hand, labeled data

must be provided in instance-level, i.e., people have to annotate a number of instances for each class.

Moreover, it is usually costly and difficult to annotate sufficient labeled data in practice [76]. On

the other hand, class-attribute descriptions can be provided in class-level, i.e., people only need to

provide one attribute description vector for each class. In addition, as pointed out in Section 2.3, this

kind of description not only can be annotated manually, but also can be automatically generated.

For example, for each class, we can use the word embedding vector of this class’s name as its

attribute description vector. Actually, lots of studies [66] [12] have shown that some public word

embedding datasets (like Huang’s project [29]
2
) perform well on a variety of attribute-related

tasks. This is also validated in our experiments.

3.2 Cross-Class Feature Selection
3.2.1 Cross-class knowledge transfer. In the source domain Ds , given a set of labeled data (xsi ,y

s
i ),

we can learn a multi-class classification model by minimizing a regularized classification loss:

min

f

ns∑
i=1

L(f (xsi ),y
s
i ) + R(f ) (1)

where L(·, ·) is a loss function, f is the learned classifier, and R is the regularization term for f
to avoid overfitting. The value of f (xsi ) can be seen as the compatibility score between the input

instance xsi and different source classes.

However, as no target instances are labeled for training, Eq. 1 cannot be directly applied for

cross-class knowledge transfer. To address this issue, existing ZSL methods [35] [60] introduce

attributes for cross-class knowledge transfer. Specifically, considering the fact that a class is well

characterized by its attributes, it is reasonable to assume that the class classifier could be derived

from the class-attribute descriptions. In other words, we can set f = h(Ss ), where h(Ss ) is the
classifier derived from source class-attribute descriptions and h is the derivation function matching

2
http://ai.stanford.edu/ ehhuang/
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features with attributes. Therefore, we can rewrite Eq. 1 as the following optimization problem:

min

h

ns∑
i=1

L(h(Ss )(x
s
i ),y

s
i ) + R(h(Ss )) (2)

Intuitively, by matching features with class-attribute representations, h(Ss )(x
s
i ) measures the

compatibility between instance xsi and different seen classes. Ideally, the most compatible attribute

representation of each training instance should come from its ground-truth class. Therefore, this

objective function can fully exploit the discriminability of attribute representations by assigning

each instance to the class with the most compatible attribute representation. On the other hand, as

attributes are generally shared by both seen and unseen classes, the learned derivation function h
should be able to generalize to the unseen classes [60]. Therefore and similarly, we can predict the

label vector of a target instance x t∈Xt by measuring the compatibility between x t and different

target classes as: yt = h(St )(x
t ), where h(St ) denotes the classifier derived from target class-attribute

descriptions. In the target domain, we call these predicted labels as pseudo labels, because we

actually do not know the true labels of target data.

We can incorporate the target domain into the objective function Eq. 2, since our ultimate goal is

to select valuable features in this domain. Therefore, we can transductively infer the pseudo labels

of target instances (i.e., Yt = {yt
1
, ...,ytnt }) by minimizing the following classification loss:

min

h,Yt

ns∑
i=1

L(h(Ss )(x
s
i ),y

s
i )+

nt∑
j=1

L(h(St )(x
t
i ),y

t
j ) + R(h(Ss )) + R(h(St ))

s.t. ∥Yt (j, :)∥0 = Yt (j, :)1ct = 1, j = 1, . . . ,nt

(3)

where ∥·∥
0
denotes the ℓ0-norm of a vector, and 1ct is a column vector with all its elements being 1.

The constraint in Eq. 3 is imposed to ensure each target instance only belongs to one target class, so

as to be consistent with our multi-class single-label setting. In addition, this constraint guarantees

discriminative feature selection, since discriminative information is usually encoded in the form of

labels [27].

The intuition behind Eq. 3 is that the classifier is able to learn the relationship between the

raw-input features and semantic descriptions (i.e., attributes). When a new unseen instance is

presented, the classifier could make a prediction about its attributes. As such, we can recognize this

unseen instance by comparing its predicted attributes with the attributes of each unseen concept.

As a concrete example, if a testing image is classified as having attributes “stripes”, “four legs”, and

“can climb”, it is more likely to be a cat than a bird or fish, even without having seen any images of

these three animals during training.

3.2.2 Target domain feature selection. As described above, we have introduced pseudo labels, via

attributes as the bridge, into the unlabeled target domain. However, these pseudo labels are learned

individually, and thus fail to preserve the intrinsic geometry structure of target data. This would

degrade the feature selection performance, especially considering that high-dimensional data often

presents a low-dimensional manifold structure [15] [47]. Therefore, to capture this structure, we

follow the general idea of manifold learning [44] [82] to ensure similar target data have similar

pseudo labels. This yields the following loss term:

1

2

nt∑
i, j=1

Gi, j




yti −ytj 


2F = Tr (Y ′
t LYt ) (4)

where L = A −G is the Laplacian matrix and A is a diagonal matrix with its i-th diagonal entry

being the sum of the i-th row of G. G is a weight matrix, whose element Gi j reflects the similarity
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between two target instance x ti and x
t
j as

Gi j =

{
1, if x ti ∈ Nk (x

t
j ) or x

t
j ∈ Nk (x

t
i );

0, otherwise,

where Nk (x
t ) denotes the k-nearest neighbors of instance x t , and the similarity of two instances

is evaluated by Euclidean distance in this paper. Actually, to preserve structure manifold, other

kernels (like Gaussian kernel) could also be adopted to construct the weight matrix G. We will

compare different kernel sittings in our experiments.

With the introduced pseudo labels, from a generative point of view, we assume that these pseudo

labels could be generated by a small subset of features. This assumption yields the following

optimization problem:

min

д

nt∑
j=1

O(д(x tj ),y
t
j ) + Ω(д) (5)

where O(·, ·) is a loss function, д is a generation function, and Ω is the sparse regularization term.

The sparse regularization term Ω forces some feature coefficients to be small or exactly zero, and

then their corresponding features can be simply eliminated. Intuitively, this objective function

seeks to approximate pseudo labels by a sparse superposition of features, making it particularly

suitable for feature selection.

The rationality of the above feature selection strategy (i.e., Eq. 4 and Eq. 5) is supported by the

manifold learning theory [44] [82], i.e., high-dimensional data often presents a low-dimensional

manifold structure. For example, [61] has shown the 2-d manifold of high-dimensional face images

(i.e., 20*28 features) could clearly reflect the pose and expression of human faces. In our method,

Eq. 4 firstly embeds the original high-dimensional data into a low-dimensional space, so as to retain

the most valuable information of original data. After that, Eq. 5 selects a small subset of features to

describe this value information, so as to reduce the feature redundancies. Intuitively, our method

prefers those features which could describe this low-dimensional manifold structure.

3.2.3 Cross-class knowledge transfer feature selection framework. By jointly considering the cross-

class knowledge transfer part (Eq. 3) and target domain feature selection part (Eq. 4 and Eq. 5),

we can effectively utilize the transferred knowledge from the source domain to guide the feature

selection in the target domain, which is formulated as follows:

min

h,Yt ,д
JCKTFS=

ns∑
i=1

L(h(Ss )(x
s
i ),y

s
i )+

nt∑
j=1

L(h(St )(x
t
i ),y

t
j )

+αTr (Y ′
t LYt )+β

nt∑
j=1

O(д(x tj ),y
t
j ) + λ(R(h(Ss )) + R(h(St )) + Ω(д))

s.t. ∥Yt (j, :)∥0 = Yt (j, :)1ct = 1, j = 1, . . . ,nt

(6)

where α , β and λ are balance parameters.

The core of the proposed framework is the use of pseudo labels whose significance mainly

lies in two-fold. On the one hand, with pseudo labels, we can select discriminative features in a

“supervised” manner. On the other hand, besides capturing the manifold structure of the unlabeled

target data, the pseudo labels used in our method also benefit from the success of attribute based

cross-class knowledge transfer. This is the primary difference between our method and other

unsupervised feature selection methods (like JELSR [28] and DisUFS [68]) which also use pseudo

labels. Intuitively, by adopting pseudo labels, we successfully connect the cross-class knowledge
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transfer task and target domain feature selection task. As such, the performance of target domain

feature selection would be significantly improved by the cross-class transferred knowledge.

Note that Eq. 6 is the general framework of the proposed CKTFS, in which we can choose

different fitting function h and д, loss function L and O, regularization R, and sparse regularization

Ω. Therefore, users can customize it based on the specific demand.

3.3 A Customized Feature Selection Model Based on CKTFS Framework
In this subsection, we give a simple but effective feature selection method by customizing the two

core parts of the proposed framework (Eq. 6). Specifically, for the cross-class knowledge transfer

part (Eq. 3), we adopt a linear model for h, i.e., h(Ss )(x
s
i ) = xsiWSs , whereW ∈ Rd,a is the linear

model that matches features with class-attribute representations. Intuitively,WSs can be seen as the

class-classifier derived from attributes and applied on features. Whereas, XsW (i.e., [xs
1
; ...;xsns ]W )

can be treated as the class-classifier derived from features and applied on attributes. In addition, we

adopt square loss for L (i.e., L(A,B) = ∥A−B∥2F ) and ridge regularization for R (i.e., R(A) = ∥A∥2F ).
For the target domain feature selection part (Eq. 5), we also choose square loss for O, and select

a linear model for д, i.e., д(x tj ) = x tjV , where V ∈ Rd,ct is the generation function. Furthermore, to

perform feature selection, we adopt the classical sparse regularization ℓ2,1-norm [52] for Ω (i.e.,

Ω(V ) = ∥V ∥
2,1 =

∑d
i=1(

∑ct
j=1V

2(i, j))
1

2 =
∑d

i=1 ∥V (i, :)∥
2
). Theoretically, the ℓ2,1-norm constraint

applied in regression is equivalent to applying Laplace prior [64] on V , which tends to force many

rows in V to be 0. More specifically, row V (i, :) shrinks towards zero if the i-th feature is less

correlated to the pseudo labels. Therefore, we can filter out the features corresponding to zero rows

of V when performing feature selection.

The above two customized parts lead to the specific objective function of the proposed approach:

min

W ,Yt ,V
JCKTFS= ∥Ys−XsWSs ∥

2

F + ∥Yt−XtWSt ∥
2

F +αTr (Y
′
t LYt )

+β ∥Yt−XtV ∥2F +λ(∥WS ∥2F + ∥V ∥
2,1)

s.t. ∥Yt (j, :)∥0 = Yt (j, :)1ct = 1, j = 1, . . . ,nt

(7)

where S = [Ss , St ] is the attribute matrix of all classes.

4 OPTIMIZATION SOLUTION
In this section, we propose an effective solution for the optimization issue (Eq. 7) in our CKTFS

framework. In addition, we theoretically analyse the time complexity of the proposed optimization

method.

4.1 Optimization Algorithm
The objective function in Eq. 7 is a standard quadratic programming problem with 0/1 constraints,

which might be hard to solve by the existing convex optimization tools [37] [3]. In this subsection,

we give an effective optimization algorithm. Specifically, like [75], we utilize an iterative approach

to optimize Eq. 7 until convergence. In each iteration, we update one variable while fixing the

other two variables. In addition, recent studies [23] show that a good initiation leads to improved

outcomes as well as accelerated convergence. In this paper, we use the ZSL classifier shown in Eq. 2

to generate the initial pseudo label matrix Yt .

Fix Yt , V and refineW First, we re-denote the notations: X = [Xs ;Xt ], Y =

[
Ys 0ns×ct

0nt×cs Yt

]
,

S = [Ss , St ].
To simplify the problem, we approximate the objective function in Eq. 7 w.r.t.W as follows:
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min

W
JW = ∥Y−XWS ∥2F +λ ∥WS ∥2F (8)

The derivative of JW w.r.t.W is:

∂JW
∂W

= 2(−X ′YS ′+X ′XWSS ′+λWSS ′) (9)

By setting the above derivative to 0, we obtain the solution forW :

W = (X ′X + λI )−1(X ′YS ′)(SS ′)−1 (10)

FixW , V and refine Yt Optimizing Eq. 7 w.r.t. Yt yields the equation:

min

Yt
JYt= ∥Yt−XtWSt ∥

2

F +αTr (Y
′
t LYt )+β ∥Yt−XtV ∥2F

s.t. ∥Yt (j, :)∥0 = Yt (j, :)1ct = 1, j = 1, . . . ,nt
(11)

Although Eq. 11 is a convex function, its optimization remains difficult due to the indicator-based

integer constraints over Yt [41]. Therefore, we first get its continuous optimal solution, and then

get an approximate solution. Specifically, the derivative of JYt w.r.t. Yt is:

∂J

∂Yt
= 2Yt − 2XtWSt + 2αLYt + 2βYt − 2βXtV (12)

By setting this derivation to zero, we get the optimal solution for updating Yt :

Yt = (I + αL + βI )−1(XtWSt + βXtV ) (13)

Then, to satisfy the constraint in Eq. 11, we further round Yt back into an indicator matrix for an

approximate solution:

Yt (i, j) =

{
1, if Yt (i, j) is the highest value in Yt (i, :)

0, otherwise
(14)

FixW , Yt and refine V Since the cost term ∥V ∥
2,1 in Eq. 7 is not smooth, we follow [52] to relax

this term by Tr (VTDV ), where D is a diagonal matrix with its diagonal element Dii =
1

2

√
V T
i : Vi :+ϵ

and ϵ is a small positive constant. Then, optimizing Eq. 7 w.r.t. V yields the equation:

min

V
JV = β ∥Yt − XtV ∥2F + λTr (V

TDV ) (15)

The derivation of JV w.r.t. V is:

∂JV
∂V
= −2βX ′

tYt + 2βX
′
tXtV + 2λDV (16)

By setting the derivation to zero, we get the solution for V :

V = (βX ′
tXt + λD)

−1(βX ′
tYt ) (17)

We can iterate the above three refinements until convergence. After that, we can perform feature

selection using the resulted V , i.e., we rank each feature according to the value of ∥Vi :∥2 in a

descending order and return the top ranked features. The complete details of this optimization

approach are presented in Alg. 1.
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Algorithm 1: Cross-class Knowledge Transfer Feature Selection (CKTFS)

Input: Source instances Xs , label indicators Ys and source attributes Ss ;
Target instances Xt and target attributes St ;
Parameters α , β and λ;
Convergence criterion ε ;

Output: Top ranked features of target data;

1 Initialize Yt by the ZSL classifier shown in Eq. 2 ;

2 repeat
3 UpdateW by Eq. 10 ;

4 Update Yt by Eq. 13 and Eq. 14 ;

5 Update V by Eq. 17 ;

6 Update the diagonal matrix D where the i-th diagonal element is
1

2

√
V T
i : Vi :+ϵ

;

7 until |Jnew−Jold |

Jold
> ε ;

8 return Rank features according to ∥Vi :∥2 in a descending order and return the top ranked

features.

4.2 Time Complexity
Suppose the total instance number is N = ns + nt , the total class number is c = cs + ct , and a is

the attribute number. Lines 3, 4 and 5 in Alg. 1 list three main operations of the proposed CKTFS

method, and the time complexity of each operation could be computed as:

• Line 3: UpdatingW involves the inversion of two matrices and some matrix multiplications,

and the total time complexity isO(d3+d2N+dcN+a3). This might be inefficient as the practical

applications usually contain high-dimensional data (i.e, d may be quite large). According

to [52], this operation can be efficiently obtained through solving the linear equation:

(X ′X + λI )W = (X ′YS ′)(SS ′)−1

whose time complexity is O(ad2 + d2N + dcN + a3).
• Line 4: Updating Yt requires the inversion of an nt -by-nt matrix together with some matrix

multiplications. The total time complexity is O(n3t + dctnt ), which is very time consuming.

Similarly, this can be efficiently obtained through solving the following linear equation:

(I + αL + βI )Yt = (XtWSt + βXtV )

whose time complexity is O(ctn
2

t + dctnt ).
• Line 5: Updating V involves the inversion of a d-by-d matrix together with some matrix

multiplications, whose total time complexity is O(d3 + d2nt + dctnt ). Similarly, we can also

turn this matrix inversion operation into solving the following linear equation:

(βX ′
tXt + λD)V = (βX ′

tYt )

whose time complexity is O(ctd
2 + d2nt + dctnt ).

Generally speaking, the attribute number and class number are much less than the feature number

and instance number, i.e., a, c ≪ d,N ≪ n2t . Therefore, if we all adopt matrix inversion for updating

every variable, the total time complexity of each iteration in Alg. 1 isO(d3+d2N +n3t ). On the other

hand, if we achieve these inversions by solving different linear equations, the time complexity of

each iteration would become O(ad2 + d2N + ctn
2

t ). Besides, in the following experimental section,

we can see our algorithm converges fast, usually in less than 15 iterations.
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5 THE EXTENSIONS OF OUR FRAMEWORK
In this section, we discuss two possible extensions of our framework (i.e., Eq. 6). Specifically, we

discuss 1) how to involve non-linear models, and 2) how to deal with the case where source and

target classes are partly overlapping.

5.1 Involving Non-linear Model
Although we can directly customize our framework (i.e., Eq. 6) with non-linear models, this may

dramatically increase the optimization difficulty of our method. Therefore, we consider this exten-

sion in two subsequent steps. The first step is the cross-class knowledge transfer step (Section 3.2.1),

in which we can first learn a non-linear cross-class knowledge transfer model (in Eq. 2). For exam-

ple, we can follow [31] to train a simple Multilayer Perception model (i.e., using the fixed input

features, and embedding class-attribute descriptions in the softmax layer) on the source domain for

cross-class knowledge transfer. After that, with the learned non-linear model, we could obtain the

predicted target instance labels Ŷt
3
.

In the second step, we jointly consider the transferred knowledge (i.e., Ŷt ) and target domain

feature selection. Specifically, in the feature selection part (formulated in Eq. 4 and Eq. 5), we hope

that the pseudo labels (i.e., Yt ) should not change too much compared to the transferred knowledge

(i.e., Ŷt ). This yields the following optimization problem:

min

Yt ,V
J=



Yt − Ŷt


2
F +αTr (Y

′
t LYt )+β ∥Yt−XtV ∥2F +λ ∥V ∥

2,1

s.t. ∥Yt (j, :)∥0 = Yt (j, :)1ct = 1, j = 1, . . . ,nt
(18)

We call this extended method as CKTFSnl, as it involves non-linear models.

Optimization The optimization approach for the problem in Eq. 18 is almost the same as Alg. 1.

The only difference is the way of updatingYt as givenW andV . Specifically, by setting the derivation

of the objective function Eq. 18 w.r.t. Yt to zero, we get the optimal solution for updating Yt :

Yt = (I + αL + βI )−1(Ŷt + βXtV ) (19)

Then, to satisfy the 0/1 constraints in Eq. 18, we further round Yt back into an indicator matrix as

described in Eq. 13.

5.2 Dealing with the overlap of source and target domains
In this subsection, we consider the case where source and target classes are partly overlapping, i.e.,

Cs ∩ Ct,∅. In other words, the source domain contains some target classes’ labeled instances. For

convenience, we can first move these (labeled) target class instances from the source domain to

target domain. Now, the target data setXt can be divided into two subsets. The first part is a set ofnt l
labeled instancesXt l = {x t

1
, . . . ,x tnt l } ∈ R

nt l ,d
which is associated with class labels Ỹt l ∈ {0, 1}nt l ,ct .

The second part is a set of ntu=nt−nt l unlabeled instances Xtu = {x tl+1, . . . ,x
t
nt } ∈ R

ntu ,d
whose

labels Ỹtu ∈ {0, 1}ntu ,ct is unknown, i.e., Ỹtu = 0
ntu ,ct

. Similarly, the predicted target data label

matrix Yt can also be rearranged as [Yt l ;Ytu ]. In particular, Yt l ∈ {0, 1}nt l ,ct is the predicted label of
nt l labeled instances (i.e.,Xt l ) and Ytu ∈ {0, 1}ntu ,ct is the predicted label of ntu unlabeled instances

(i.e., Xtu ).

As in this case some target instances are labeled, we should ensure the predicted target data

labels (i.e., Yt l ) to be consistent with this knowledge. Therefore, we add a new constraint (i.e.,

3
To avoid ambiguity, we use Ŷt to denote the predicted target labels in this first step, and continue to use Yt to denote the

pseudo labels used in the feature selection part (in Section 3.2.2).
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Yt l = Ỹt l ) into our original objective function (i.e., Eq 7). This yields the following optimization

objective function:

min

W ,Yt ,V
JCKTFS

s.t. ∥Yt (j, :)∥0 = Yt (j, :)1ct = 1, j = 1, . . . ,nt

Yt l = Ỹt l

(20)

We call this extended method as CKTFSo, as it considers the overlap case of source and target

domains.

Optimization The optimization approach for the problem in Eq. 20 is almost the same as Alg. 1.

The main difference is that: after updating Yt as Alg. 1 does, we further force Yt l = Ỹt l to satisfy the

constraint of this problem. Besides, for the same reason, we also force Yt l = Ỹt l when initializing

Yt at the beginning of Alg. 1.

6 RELATIONS TO OTHER APPROACHES
In this section, we discuss the relationship between some existing feature selection methods and

our methods (including CKTFS, CKTFSnl and CKTFSo). Note: in the following, we first remove

the cross-class knowledge transfer part of our method (formulated in Eq. 7) and then compare

ours with others. This is because our method is the first method which transfers the cross-class

knowledge to guide feature selection.

6.1 The relation of CKTFS to other approaches
After removing the cross-class knowledge transfer part, the objective function of CKTFS (formulated

in Eq. 7) becomes:

min

Yt ,V
αTr (Y ′

t LYt )+β ∥Yt−XtV ∥2F +λ ∥V ∥
2,1

s.t. ∥Yt (j, :)∥0 = Yt (j, :)1ct = 1, j = 1, . . . ,nt
(21)

Relation to JELSR The well-known unsupervised feature selection method JELSR [27, 28] joins

embedding learning with sparse regression for feature selection, which can be formulated as the

following problem:

min

Y ′
tYt=Ict ,ct ,V

Tr (Y ′
t LYt )+β ∥Yt−XtV ∥2F +λ ∥V ∥

2,1 (22)

where Ict ,ct is a ct × ct identity matrix.

Comparing the formulation in Eq. 22 with that in Eq. 21, we can see the main difference lies in

two points. The first point is the constraint imposed on Yt , i.e., the 0/1 constraint in our method

and orthogonality constraint in JELSR. In fact, this orthogonality constraint is well-known as

a relaxation of the 0/1 constraint [72]. The second point is the way of building the Laplacian

matrix (i.e., L): JELSR employs the locally linear approximation and our method employs binary

k-nearest-neighbor strategy. Consequently, JELSR in Eq. 22 can be regarded as a special case of

CKTFS, if we remove the cross-class knowledge transfer part of our method, employ the locally

linear approximation strategy in Eq. 4, and relax the 0/1 constraint in Eq. 3 as Y ′
tYt = Ict ,ct .

Relation to MCFS MCFS [5] is also a well-known unsupervised feature selection approach. It first

adopts the spectral clustering to characterize manifold structure, and then perform feature selection

via ℓ1-norm regularized regression learning. Specifically, MCFS solves the following optimization

problem in a two stage way:

min

Y ′
tDYt=Ict ,ct

Tr (Y ′
t LYt )

min

V
∥Yt−XtV ∥2F +λ ∥V ∥

1,1

(23)
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Comparing the formulation in Eq. 23 with that in Eq. 21, we can see the main difference lies in

three points. Firstly, MCFS has a D-orthogonal constraint for Yt (i.e., Y
′
tDYt = Ict ,ct ), which can be

seen as a relaxation and re-normalization of the 0/1 constrain in Eq. 21. Secondly, MCFS adopts

the ℓ1-norm regularization for regression learning (i.e., feature selection learning). Thirdly, MCFS

separates the manifold learning and regression learning. Therefore, MCFS in Eq. 23 can be regarded

as a special case of CKTFS, if we remove the cross-class knowledge transfer part, and replace the

0/1 constraint and ℓ2,1-norm regularization in Eq. 7 with the D-orthogonal constraint and ℓ1-norm
regularization respectively, and finally separate the manifold learning and sparse learning.

Relation to Spectral Regression Spectral Regression (SR) [4] is a famous dimensionality reduc-

tion approach. It first adopts the spectral clustering (i.e., the idea of graph laplacian) to characterize

manifold structure, and then learns a linear dimensionality reduction function via regression.

Theoretically, SR solves the following optimization problem in a two stage way:

min

Y ′
tDYt=Ict ,ct

Tr (Y ′
t LYt )

min

V
∥Yt−XtV ∥2F +λ ∥V ∥2

2

(24)

Firstly of all, comparing the formulation in Eq. 24 with that in Eq. 23, we can find the only

difference between SR and MCFS is: they adopt different regularization norms. Therefore, and

similar to the analysis of MCFS, SR in Eq. 24 can be regarded as a special case of CKTFS, if we remove

the cross-class knowledge transfer part, and replace the 0/1 constraint and ℓ2,1-norm regularization

in Eq. 7 with the D-orthogonal constraint and ℓ2,2-norm regularization respectively, and finally

separate the manifold learning and the ℓ2,2-norm regularized regression learning.

6.2 The relation of CKTFSnl to other approaches
As mentioned in Section 5.1, comparing to the original method, CKTFSnl performs the cross-class

knowledge transfer task and target domain feature selection task in sequence. Therefore, we omit

the discussion about CKTFSnl whose analysis would be similar to that of CKTFS.

6.3 The relation of CKTFSo to other approaches
After removing the cross-class knowledge transfer part, the objective function of CKTFSo (formu-

lated in Eq. 20) becomes:

min

Yt ,V
αTr (Y ′

t LYt )+β ∥Yt−XtV ∥2F +λ ∥V ∥
2,1

s.t. ∥Yt (j, :)∥0 = Yt (j, :)1ct = 1, j = 1, . . . ,nt

Yt l = Ỹt l

(25)

Relation to SFSS SFSS [50] is a well-known semi-supervised feature selection method. Specifically,

it joins feature selection, manifold regularization and transductive classification. Mathematically,

this method can be regarded as solving the following problem:

min

Yt ,V
Tr (Y ′

t LYt )+Tr ((Yt − Ỹt )
′U (Yt − Ỹt )) + β ∥Yt−XtV ∥2F +λ ∥V ∥

2,1 (26)

where Ỹt = [Ỹt l ; Ỹtu ] is the given label information of target data, andU is a diagonal matrix whose

diagonal element Uii is a very large value (like 10
10
) if target instance x ti is labeled and Uii = 1

otherwise. Intuitively, matrixU is defined to make the predicted labels Yt consistent with the given

labels Ỹt .
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football_field acropoliswind_farm downtown

(a) SUN

bag catstatue jetski

(b) aPY

horse boatcar plane

(c) CIFAR10

Fig. 3. Some samples from the tested image datasets. (a) SUN. (b) aPY. (c) CIFAR10. (AwA does not provide
the image set in JPEG format for copyright reasons.)

Theoretically, when we set Uii = ∞ for every labeled target instance x ti , optimizing Eq. 26 is

equivalent to optimizing the following optimization problem:

min

Yt ,V ,Yt l=Ỹt l
Tr (Y ′

t LYt ) + β ∥Yt−XtV ∥2F +λ ∥V ∥
2,1 (27)

Comparing Eq. 27 and Eq. 25, the only difference is that Eq. 25 adds extra 0/1 constraint on the

unlabeled target data’s predicted labels (i.e., Ytu ). Therefore, SFSS in Eq. 26 can be regarded as a

special case of CKTFSo, if we remove the cross-class knowledge transfer part and the 0/1 constraint

in CKTFSo.

Relation to LASSO LASSO [70] is the classical supervised feature selection method. It learns an

ℓ1-norm regularized linear least squares regression, which can be formulated as:

min

V




Ỹt l−Xt lV



2
F
+λ ∥V ∥

1,1 (28)

We can clearly find that LASSO in Eq. 28 can be regarded as a special case of CKTFSo, if we

remove the cross-class knowledge transfer part and manifold learning part, and only consider the

labeled target data, and replace ℓ2,1-norm regularization with ℓ1-norm in CKTFSo.

7 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the performance of the proposed

CKTFS method. Firstly, we introduce four real-world datasets. Then, since existing methods cannot

address the cross-class setting, we compare the proposed method with both unsupervised and

supervised feature selection methods for an extensive comparison. After that, we evaluate the

performance of our method w.r.t. source domain size. Lastly, we study the convergence of the

proposed optimization algorithm (Alg. 1) and the effect of parameters on performance.

7.1 Experimental Setup
Datasets We test the proposed CKTFS method on four benchmark datasets with attributes. SUN

scene attributes database (SUN) [57] 4
is the first dataset, which contains 14,340 images from 717

different scenes like “beach” and “airport”. In this dataset, each class has 20 images, and each

image is annotated by a 102-dimensional binary attribute vector manually. We obtain the attribute

representation of each class by averaging attribute vectors of the images belonging to that class.

We follow the source/target split in [30].

4
https://cs.brown.edu/ gen/sunattributes.html
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Table 2. The statistics of datasets

SUN aPY AwA CIFAR10

# source classes 707 20 40 5

# source images 14,140 12,695 24,295 30,000

# target classes 10 12 10 5

# target images 200 2,644 6,180 30,000

# attributes 102 64 85 50

# features 4,096 4,096 4,096 4,096

The second dataset is aPascal/aYahoo objects dataset (aPY) [20]5 which has two parts. The

aPascal part contains 20 types of objects from the PASCAL VOC2008 dataset, and the aYahoo

part contains 12 different categories collected using Yahoo image search engine. We follow the

standard source/target split setting where the aPascal part and aYahoo part serves as the source

and target domain, respectively. In this dataset, each image is annotated by a 64-dimensional binary

attribute vector. We average the attribute representations of images in the same category to get the

class-attribute representation.

The third dataset is Animal with Attributes (AwA) [35]6 which contains 30,475 images from

50 animal classes such as “zebra” and “mouse”. In this dataset, each class is described by a 85-

dimensional binary attribute vector including various attributes such as “is black” and “eats fish”.

We adopt its standard source/target split, i.e., 40 classes with 24,295 images are adopted as the

source part and 10 classes with 6,180 images are adopted as the target part.

The fourth dataset is CIFAR10 [33]
7
which consists of 10 classes of objects with 6,000 images

in each class. Since this dataset does not have a standard source/target split, we simply use the

top half classes (i.e., “airplane”, “automobile”, “bird”, “cat” and “deer”) as source classes and use the

other half as target classes. In addition, since this dataset does not provide any manually annotated

attributes, we adopt the 50-dimensional class-label embedding vector provided by [29] as attributes
8
.

Concretely, these embedding vectors are automatically generated from a Wikipedia corpus [65]

with a total of about 2 million articles and 990 million tokens.

For these four datasets, we all adopt the widely used 4,096-dimensional deep features. Specifically,

for SUN, aPY, and CIFAR10, we adopt the deep features provided by [22]. For AwA, we adopt the

deep features provided in its project page. The statistics of these four benchmarks are shown in

Table 2, and some samples can be found in Fig. 3.

Experimental Setting Since determining the optimal number of selected features is still an

open problem [69], we follow [48] to select the number of features ranging from 50 to 500 with

incremental step 50. The quality of the selected features by various methods is evaluated in the

tasks of both clustering and classification. Specifically, we directly apply the compared methods on

the target data to compare with ours, since existing methods cannot address the cross-class setting.

7.2 Comparison to Unsupervised Methods
In this subsection, we compare the proposed method with state-of-the-art unsupervised feature

selection methods. Following a standard way to assess unsupervised feature selection [25], we

evaluate the quality of the selected features in terms of clustering performance. Specifically, each

5
http://vision.cs.uiuc.edu/attributes/

6
http://www.attributes.kyb.tuebingen.mpg.de/

7
https://www.cs.toronto.edu/ kriz/cifar.html

8
https://github.com/ninjin/huang_et_al_2012
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Fig. 4. Clustering results (ACC).

compared method is first applied to select features in the target domain. Then the classical K-
means clustering

9
is performed on target data represented by the selected features. Since K-means

is sensitive to initialization, we repeat the clustering 20 times with random initializations and

record the average performance. Finally, as in [15], the clustering result is evaluated by two widely

used clustering quality evaluation metrics, Accuracy (ACC) and Normalized Mutual Information

(NMI)
10
[17].

Baselines In this study, we compare the proposed method with the following baselines:

(1) Random which selects features randomly.

(2) AllFea which selects all original features.

(3) LapScore [25] which evaluates features according to their ability of preserving the local

manifold structure.

(4) MCFS [5] which selects features by using spectral regression with ℓ1-norm regularization.

(5) JELSR [28] [27] which joins embedding learning with sparse regression for feature selection.

(6) TRACK [73] which selects features via a unified trace ratio formulation and K-means cluster-

ing.

(7) ESZSL [60] which is a ZSL method. For feature selection, we first adopt ESZSL to predict

target instance labels, and then feed these labels to the classical supervised feature selection

method LASSO [70].

(8) FSASL [15] which performs structure learning and feature selection simultaneously.

Parameter Settings Following [5], for LapScore, MCFS, JELSR, and the proposed CKTFS method,

we fix the neighborhood size to be 5. As suggested in [73], the reduced dimensionm in TRACK is

set as:m=c−1 if d≤n, andm=c−1+d−n if d>n, where c is the target class number and d is the data

dimensionality. Similar to [15, 27], to fairly compare all methods, we tune their parameters (if any)

by a “grid-search” strategy from {10−2, 10−1, 100, 101, 102} and report the best results. For the ZSL

method ESZSL, we treat the source domain as seen and target domain as unseen, so as to following

the general sitting of ZSL studies [1]. In our method, our parameters are chosen (from the above

“grid”) via cross-validation on the source domain.

Experimental Results Figure 4 and Figure 5 show the clustering performance in terms of ACC

and NMI, respectively. There are several important observations as follows.

The first observation is that: compared with AllFea (i.e., using all features), feature selection is

necessary and effective by removing the noise and redundancy. In particular, it not only reduces

feature number but also improves the performance of K-means clustering. For example, in the

9
We adopt the source code from http://www.cad.zju.edu.cn/home/dengcai/Data /code/litekmeans.m

10
We adopt the source code from www.cad.zju.edu.cn/home/dengcai/ Data/Clustering.html
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Fig. 5. Clustering results (NMI).

SUN dataset, when using only 200 (of the total 4099) features, almost all feature selection methods

outperform AllFea. Besides, with only 200 features, the proposed CKTFS method could achieve

competitive or even better performance than AllFea in all four datasets. This further shows the

superiority of our method. On the other hand, we also find that the clustering performance does

not always increase with more selected features. This indicates that the original features contain

some redundancy and noise, which could be harmful for data processing applications.

The second observation is that, on the one hand, ESZSL clearly outperforms Random; while

on the other hand, ESZSL still performs much worse than our method CKTFS. First of all, the

comparison between ESZSL and Random verifies the usefulness of attribute-based cross-class

transferred knowledge for feature selection. We can further explain this by looking at the target

domain classification accuracy of ESZSL. As shown in Table. 3, ESZSL achieves much higher

accuracy than Random-Guess (i.e., classifying randomly) on the target domain. On the other hand,

the comparison between ESZSL and CKTFS indicates that ESZSL could be further improved by

considering the manifold structure of target domain. Moreover, we also find some unsupervised

methods (like MCFS and JELSR) achieve competitive or even better performance than ESZSL.

All these observations confirm the advantage of our basic idea, i.e., considering both cross-class

knowledge transfer and target data manifold learning.

The third observation is that the proposed CKTFS method significantly better than those unsu-

pervised methods, in terms of both ACC and NMI, on all datasets with different numbers of selected

features. For example, when selecting 100 features in all four datasets, CKTFS outperforms the best

baseline approaches JELSR or MCFS by 20∼50% relatively in terms of both ACC and NMI. This is

a remarkable result for unsupervised feature selection. The major reason is that CKTFS benefits

from the success of attribute based cross-class knowledge transfer. Specifically, the introduced

pseudo labels in CKTFS encode the cross-class transferred knowledge. As a counterexample, the

compared method JELSR, which also uses pseudo labels but fail to capture this knowledge, performs

significantly worse than ours.

The fourth observation is that CKTFS also outperforms baseline methods even when attributes

are automatically generated. In particular, Figs. 4(d) and 5(d) show the experimental results on

the CIFAR10 dataset whose attributes are automatically generated from a Wikipedia corpus. On

average, CKTFS outperforms the best baseline methods TRACK or MCFS around 15% relatively in

terms of both ACC and NMI. These results indicate that our method has a wide application range.

Finally, we report the statistical significance of these comparison results shown in Fig. 4 and

Fig. 5. Following [27], we compare our method with other baselines by Student’s t-test. To avoid

redundancy, we only report the averaged comparison results with two baselines: AllFea and the

best compared feature selection method. As shown in Table 4, from the statistical view, we can

see that CKTFS achieves significantly better results comparing to the other methods. Moreover, in
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Table 3. ZSL classification accuracy on target domain.

SUN aPY AwA CIFAR10

Random-Guess 0.0950 0.0859 0.1073 0.1993

ESZSL 0.6900 0.1700 0.3683 0.4101

Table 4. The t-Test results between our method CKTFS and other methods for the averaged clustering results
in Figs. 4 and 5. “W” means CKTFS performs better. “F” means other method performs better. “B” means that
CKTFS and other method cannot outperform each other. The value in the bracket is the associate p-Value
(the smaller p-Value means the higher assurance of the conclusion). Statistical significance of t-Test is 5%,
and we do not report the p-Value when the mark is “B”.

SUN aPY AwA CIFAR10

Top2 Baselines AllFea FSASL AllFea MCFS AllFea FSASL AllFea MCFS

ACC W(.00) W(.00) F(.01) W(.00) B(-) W(.00) W(.00) W(.00)

NMI W(.00) W(.00) F(.00) W(.00) F(.01) W(.00) W(.00) W(.00)

some cases, our method even achieves significant better results than AllFea. These results reaffirm

the effectiveness of our method.

7.3 Comparison to Supervised Methods
In this subsection, we compare the proposed method with state-of-the-art supervised feature

selection methods.

Baselines We compare the proposed method with the following baselines:

(1) AllFea which selects all original features.

(2) LASSO [70] which is the classical feature selection method based on the ℓ1-norm regulariza-

tion.

(3) Fisher [16] which selects features with large between-class distance and small within-class

distance.

(4) L20ALM [6] which evaluates features under an ℓ21-norm loss function with ℓ20-norm con-

straint.

(5) TRCFS [48] which is a recent semi-supervised feature selection algorithm based on noise

in-sensitive trace ratio criterion.

First and foremost, although we assume target data contains no supervision information, the class

labels and attribute information in the source domain can be treated as supervision information. In

addition, to make a comprehensive comparison, we even provide a few labeled target instances

to test the performance of these baselines. More specifically, we test the following settings of a

compared supervised method M:

• MSL: adopting the source class labels (i.e., Ys ) as supervision information.

• MSA: adopting the source class attributes (i.e., Ss ) as supervision information.

• MSLA: adopting both source class labels and attributes as supervision information.

• MSLA5s: adopting source class labels, source class attributes and 5 labeled instances of each

target class as supervision information.

Following a standard way to assess supervised feature selection [48], we use classification

performance to evaluate the quality of the selected features. For each compared supervised method

M, we first obtain some important features in a specific setting (like MSL). Then, in the target

domain, we test the quality of the selected features by the popular 1-nearest neighbor classifier
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Fig. 6. Classification results (Micro-F1).
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Fig. 7. Classification results (Macro-F1).

as [6]. Specifically, as [6], we randomly select 20% of target data for training this classifier and

use the remaining part for testing. The reason of using small portion of training data is because it

is well-known that when the training data size becomes sufficiently large, any feature selection

method will perform well. We repeat the classification 20 times, and report the average performance

in terms of two commonly used metrics Micro-F1 and Macro-F1 [17].

In addition, for the setting of MSLA (i.e., adopting both source class labels and attributes as

supervision information), we first obtain the feature importance ranking lists of MSL and MSA

separately. Then, to get the results of MSLA, we adopt the classical “CombSUM” multiple ranking

list combination strategy [39] to combine these two ranking lists. We implementMSLA through

these two steps, since none of the compared methods could simultaneously utilize two kinds of

supervision. Similarly, for the setting ofMSLA5s, we also adopt the “CombSUM” strategy to combine

three individual ranking lists (i.e., the results ofMSL,MSA andM with 5 labeled instances of each

target class).

Parameter Settings For a fair comparison, we also tune parameters as we do previously. In

addition, for L20ALM, the suggested parameter setting (µ = 0.01 and ρ = 1.02) is also tested. For

all compared methods, we report the best results we could obtain.

Experimental Results Figure 6 and Figure 7 show the classification accuracy in terms of Micro-F1

and Macro-F1, respectively. The results are similar to those of the clustering task, i.e., CKTFS almost

always outperforms other supervised methods, in terms of both Micro-F1 and Macro-F1, on all

datasets with different numbers of selected features.

Specifically, firstly, when adopting source class labels as supervision, all compared methods

(i.e., MSL) perform much worse than our method. This indicates that it is inappropriate to directly

borrow supervised knowledge form source domain when its classes are different from target ones.

The reason might be that in the cross-class setting source class labels only reflect the discrimination
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Table 5. The t-Test results between our method CKTFS and other methods for the averaged classification
results in Figs. 6 and 7. “W”, “F” and “B” denote the same meanings as in Table. 4. We also report the p-Value
and the statistical significance of t-Test is also 5%.

SUN aPY AwA CIFAR10

Top2 Baselines AllFea LASSOSLA5s AllFea LASSOSLA5s AllFea LASSOSLA5s AllFea LASSOSLA5s

Micro-F1 W(.00) W(.00) W(.00) W(.00) F(.00) W(.00) W(.00) W(.00)

Macro-F1 W(.00) W(.00) B(-) W(.00) F(.00) W(.00) W(.01) W(.00)

among source classes, and provide little information about target classes. Therefore, supervised

methods may be misled by the source class labels which provide little information about target

classes. Intuitively, we can understand this by the fact that old knowledge may often need to be

modified to fit the new problem.

Secondly, when adopting source attributes as supervision, all compared methods (i.e., MSA) still

perform much worse than our method. This also shows the superiority of our method. However,

an interesting observation is thatMSA methods mostly perform much better thanMSL ones. For

example, LASSOSL achieves the best performance among all the compared baselines in most cases.

This may be partly explained by the success of ZSL which has shown that attributes could serve as

a bridge to transfer supervised knowledge across different classes.

Thirdly, our method still outperforms these supervised methods when they adopt two or even

three kinds of supervision information (i.e.,MSLA andMSLA5s)
11
. For example, although LASSOSLA5s

even utilizes some target label information, our method still outperforms it by 20∼100% relatively

in terms of both Micro-F1 and Macro-F1. These results reaffirm that our method can be an effective

way for discriminative feature selection, when few or even no labeled examples are available.

Finally, we also report the statistical significance of these comparison results shown in Fig. 6

and Fig. 7. The comparison setting is the same as that of Section 7.2. As shown in Table 5, from

the statistical view, we can see that CKTFS achieves significantly better results comparing to the

other feature selection methods. These results reaffirm that our method can select features very

effectively.

7.4 More extensions of CKTFS
In this subsection, we test more extensions of our method in the following settings:

• CKTFSд : adopting Gaussian kernel (i.e., K(xi ,x j ) = e
−∥xi −xj ∥

2

2σ 2
) weight for the k-nearest-

neighbor graph, so as to capture the structure of target domain (Section 3.2.2). Specifically,

following [77], the kernel width σ is empirically set as 2
1/2.5δ , where δ is the standard

deviation of the target data.

• CKTFSnl : adopting non-linear model in the proposed framework (Section 5.1). For simplicity,

we adopt the simple Multilayer Perception model described in Section 5.1.

• CKTFSo : dealing the case where source and target classes are partly overlapping. For sim-

plicity, we randomly select two target classes as partly labeled classes, and adopt 30% the

instances of these two classes as labeled data. We repeat this random selection 20 times.

Figure 8 shows the averaged clustering accuracy of all these variants. The best two compared

feature selection methods (i.e., MCFS and FSASL) are adopted as baselines. Firstly, we can see that

CKTFSд achieves very similar performance as the original CKTFS method. This indicates that

11
Due to space limitations, for the settings of MSLA and MSLA5s, we only report the results of LASSO which shows the

best performance in the settings of MSL and MSA.
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Fig. 8. Averaged clustering performance (ACC) w.r.t different extensions of CKTFS.

Gaussian kernel could also be adopted to capture the manifold structure of target domain, which is

consistent with previous studies [27] [83].

Secondly, on the one hand, we find that CKTFSnl performs worse than the original CKTFS

method. The reason might be that CKTFSnl treats the cross-class knowledge transfer and target

domain feature selection separately. In contrast, the original CKTFS method treats these two parts

in a joint framework for a better solution. This indicates that jointly considering source and target

domains is more effective than involving non-linear models in separate steps. On the other hand, we

also find that CKTFSnl significantly outperforms the best two compared feature selection methods.

This indicates that CKTFSnl still benefits from the success of attribute based cross-class knowledge

transfer.

Thirdly, CKTFSo always achieves the best performance. This shows that CKTFSo could benefit

from the target domain’s label information, which also validates that our framework (i.e., Eq. 6)

could be extended to deal with the case where source and target classes are partly overlapping.

7.5 Effect of Source Domain Size
In this part, we evaluate the performance of the proposed CKTFS method w.r.t. source domain size.

To make an extensive comparison, we also test CKTFS in an extreme case where the source domain

is completely removed. Although, this case is not the focus of this paper, as shown in Eq. 21 in

Section 6.1, we can still extend our method to handle this case. Here, we only conduct on the SUN

dataset, because we have similar observations in other datasets. On this dataset, since our method

reaches the best performance with around 100 features and starts to fluctuate, we change the initial

feature setting to a more fine-grained one (i.e., [20,40,...,200]) to show the effect of source domain

size more clearly. For simplicity, we experimentally set the parameters in CKTFS as: α = 0.1, β = 1,

and λ = 0.01. For an extensive study, we design two different experiments.

The first experiment is to test the effect of source class number. In particular, we keep the target

domain unchanged and randomly choose some source classes for CKTFS. In other words, the

number of selected source class is changing while each source class size is unchanged (i.e., 20

images/class). Figure 9(a) shows the aggregated clustering results in terms of ACC. Firstly, we can

find that even with only 1% of source classes, our method could still benefit the success of cross-class

knowledge transfer. Contrarily, the compared method JELSR, which also utilizes pseudo labels

but neglect this knowledge, performs much worse than ours. Secondly, we find that as the source

class number grows, the performance of our method grows. We analyze that with more source

classes, we can learn a better inter-mediate knowledge, i.e., the relationship between attributes and

features. As such, more reliable supervised knowledge would be transferred to the target domain,
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Fig. 9. Effect of Source Domain Size on SUN dataset.
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Fig. 10. Clustering performance and objective function value (in Eq. 7) at different numbers of iterations.

thereby simultaneously improving the quality of selected features. Lastly, when the source class rate

reduces to 0%, our method only has the similar performance as JELSR. As theoretically analysed in

Section 6.1, this is because after removing the cross-class knowledge transfer part, the formulation

of CKTFS reduces to Eq. 21 which can be directly relaxed to JELSR’s formulation (i.e., Eq. 22). In

summary, the above observations reaffirm the significance of transferring cross-class knowledge

for feature selection.

The second experiment is to test the effect of labeled ratio in all source classes. Specifically, we

still keep the target domain unchanged and vary the ratio of labeled data in all source classes.

In other words, the source class number (i.e., 707) is unchanged while each source class size is

changing. Figure 9(b) shows the aggregated clustering results in terms of ACC. It is easy to find and

understand that as the ratio of labeled data grows, the performance of CKTFS improves significantly.

Considering the results of these two experiments together, we can find an interesting observation:

when the sample ratios in these two experiments are same, the performance of CKTFS in the second

experiment is always better. For instance, when the sample ratios are both 0.1, the performance in

the second experiment has 8% higher observed improvements than the first one. This indicates that

compared to the data size in each class, source class number is more critical for our method. We may

explain this as follows. When the source class number is fixed, even if the data size of each class

increases, the learned knowledge (about features and attributes) would still be limited to these fixed

classes. On the other hand, when more variety of source classes are added, the learned knowledge

could reflect a more “real-world” experience, and has better generalizability. This may also explain

why CKTFS especially outperforms the other methods in the SUN dataset which has significantly

more source classes (i.e., 707), compared to the other three datasets (shown in Sections 7.2 and 7.3).
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Fig. 11. The effect of parameter α on the SUN dataset.
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Fig. 12. The effect of parameter β on the SUN dataset.

7.6 Convergence Analysis
We conduct an empirical experiment to show the effective of the proposed alternating optimization

algorithm (Alg. 1). Specifically, we fix the CKTFS’s parameters as described in Section 7.5, and

empirically set the iteration convergence criterion (i.e., ε) as 10−5. In practice, we can also set a

maximum iteration value to control this iteration.

Figure 10 shows the clustering performance and objective function value w.r.t. each iteration

in Alg. 1. We can see that CKTFS converges rapidly in all datasets, which is more efficient than

some typical existing methods, such as the trace norm [15] and ℓ21-norm based feature selection

methods [28].Meanwhile, the clustering accuracy increases and quickly reaches the highest accuracy

in around 5 steps.

7.7 Parameter Analysis
As mentioned in Section 3, the proposed CKTFS method has three parameters. The parameter α
controls how strongly the transferred knowledge, i.e., the introduced pseudo labels, preserves the

manifold structure of target data. The parameter β measures the fitness of the introduced pseudo

labels w.r.t. target features. The third parameter λ, which has been empirically set to 0.01, controls

the effect of the regularization term.

In this subsection, we investigate the effect of all these three parameters. Specifically, we vary

the value of one parameter while keeping the others fixed at the optimal value. Here, we only
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Fig. 13. The effect of parameter λ on the SUN dataset.

present the results on SUN, since we have similar observations in other datasets. The experimental

results are shown in Figs. 11, 12 and 13. We have the following observations. i) The performance is

consistently improved when more features are selected. This indicates that all the features selected

by CKTFS contain additional useful information. ii) CKTFS performs stably and effectively when

parameter α lies in {10−2, 10−1, 100}. This may be due to the fact that the tested images are all

captured from real scenarios and contain lots of noise. In other words, this parameter may be

sensitive to the properties of the different datasets. iii) CKTFS reaches high performance, when

parameter β gets large values, i.e., {100, 101, 102}. The reason is quite simple: since our goal is

feature selection, we need large β to reflect the relevance between features and pseudo labels. iv)

CKTFS is not very sensitive when parameter λ lies in {10−2, 10−1, 100}. This suggests us to choose a
small regularization parameter, which is in agreement with most related studies, such as [28], [15]

and [69].

8 CONCLUSION
This paper investigates the feature selection problem in a cross-class setting where the labeled

source classes and unlabeled target classes are related in an intermediate attribute level but different.

We propose a novel feature selection framework named CKTFS which transfers the cross-class

knowledge from the source domain to guide target domain feature selection. In addition, to further

improve the performance, our framework considers the tasks of cross-class knowledge transfer

and feature selection jointly. Extensive experiments conducted on several real-world datasets

demonstrate the effectiveness of the proposed method. In the future, we plan to extend our method

to make it suitable for exploring the label information in the target domain.
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