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Abstract

Information source detection, which is the reverse problem
of information diffusion, has attracted considerable research
effort recently. Most existing approaches assume that the un-
derlying propagation model is fixed and given as input, which
may limit their application range. In this paper, we study the
multiple source detection problem when the underlying prop-
agation model is unknown. Our basic idea is source promi-
nence, namely the nodes surrounded by larger proportions
of infected nodes are more likely to be infection sources. As
such, we propose a multiple source detection method called
Label Propagation based Source Identification (LPSI). Our
method lets infection status iteratively propagate in the net-
work as labels, and finally uses local peaks of the label propa-
gation result as source nodes. In addition, both the convergent
and iterative versions of LPSI are given. Extensive experi-
ments are conducted on several real-world datasets to demon-
strate the effectiveness of the proposed method.

Introduction

Information diffusion is one of the most important topics in
social network research (Centola 2010; Wang et al. 2016).
Recently, people are more interested in its reverse problem:
Given a snapshot of a partially infected network, can we
identify the infection sources? The answer to this problem
has vast applications in mitigating the damage of epidemics
caused by infectious diseases, rumor spreading in social me-
dia, and so forth.

The abovementioned multiple source detection problem
has attracted many researchers (Prakash, Vreeken, and
Faloutsos 2012; Luo, Tay, and Leng 2013; Zang et al.
2015; Chen, Zhu, and Ying 2016). These studies deal
with this problem differently according to the types of the
used propagation models such as the Susceptible-Infected
(SI) model (Anderson, May, and Anderson 1992) and
Susceptible-Infected-Recovered (SIR) model (Allen 1994),
i.e., they all assume that the underlying propagation model
is fixed and known.

However, in practice, identifying the correct propagation
model always needs prior knowledge, which limits the appli-
cation range of source detection methods. For instance, it is
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Label Propagation

Figure 1: The framework of our LPSI approach to the mul-
tiple source detection problem.

hard to choose an appropriate propagation model for a new
infectious disease or online rumor. Moreover, it is difficult
to acquire the true values of parameters in the pre-selected
underlying propagation model. Therefore, it is necessary but
challenging to detect infection sources without knowing the
underlying propagation model.

In this paper, we address the multiple source detection
problem based on the idea of source prominence, namely the
nodes surrounded by larger proportions of infected nodes are
more likely to be source ones. To better understand the basic
idea, one can imagine that a part of the network has been
infected by an infection source. On the one hand, at the mar-
gin of the infected region, nodes tend to have less infected
neighbors. On the other hand, in the center of the infected
region, nodes tend to have more infected neighbors. This in-
tuition is reasonable in most existing propagation models,
such as the SI and SIR models.

Inspired by the primary idea of source prominence, we
propose a multiple source detection method called Label
Propagation based Source Identification (LPSI). Our ap-
proach tries to automatically identify actual source nodes
without knowing the underlying propagation model. The
general process is as follows. We first assign positive labels
to the infected nodes, and negative labels to the uninfected
nodes in the network. Then we iteratively propagate label in-
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formation among nodes based on a probability matrix which
is generated according to the network structure. Finally, we
get the convergence result, where “source” nodes are shown
as local peaks with the highest “infected” label values.

Example: As an example, Fig. 1 depicts a partially in-
fected network, in which a sub-network has been infected by
a stochastic process starting from two sources (nodes 1 and
11). The red nodes are infected nodes and the white ones are
uninfected. At first, we assign positive labels (+1) to infected
ones, and negative labels (-1) to uninfected ones. After that,
their label values are propagated and updated iteratively, and
the propagation result at iteration step 10 is shown at the bot-
tom right of Fig. 1. Finally, we get the convergence result,
where nodes 1 and 11 are two local maximum points. As a
result, we consider these two nodes as infection sources.

Contributions: The major contributions of this paper are
summarized as follows:

• We present and formalize the multiple source detection
problem without knowing the underlying propagation
model, which has rarely been mentioned in the literature.

• We propose the Label Propagation based Source Identi-
fication (LPSI) method for the above problem. In addi-
tion, both the convergent and iterative versions of LPSI
are brought forward.

• Extensive experiments conducted on real-world datasets
demonstrate the effectiveness and efficiency of our meth-
ods in identifying the actual source nodes.

Preliminaries

In this section, we briefly review some propagation models
proposed so far, and formulate our problem.

Propagation Models

According to (Easley and Kleinberg 2010), existing propa-
gation models could be categorized as either infection mod-
els or influence models, with respect to their intended appli-
cations.

Infection Models To describe the transmission of commu-
nicable disease through individuals, various infection (epi-
demic) models are proposed, such as Susceptible-Infected
(SI) model (Anderson, May, and Anderson 1992) and
Susceptible-Infected-Recovered (SIR) model (Allen 1994).

In the SI model, each node is in one of two states: suscep-
tible (S) or infected (I). Once a node is infected, it stays
infected forever. In each discrete time step, each infected
node tries to infect its susceptible (uninfected) neighbors in-
dependently with probability p, which reflects the strength
of the disease spread. While in the SIR model, each node
has three possible states: susceptible (S), infected (I) and
recovered (R). The infection process is similar except that
infected nodes can recover with probability q. In addition,
recovered nodes cannot be infected any more.

Influence Models In order to model how users influ-
ence each other in a social network, researchers have pro-
posed many influence models, such as Independent-Cascade

(IC) model (Goldenberg, Libai, and Muller 2001) and Lin-
ear Threshold (LT) Model (Kempe, Kleinberg, and Tardos
2003).

In both IC and LT models, every node is represented as
a binary variable with either active (infected) or inactive
(susceptible) status. The major difference between these two
models is the way how an active node influences its neigh-
bors. In the IC model, when a node first becomes active at
a time step, it has exactly one chance to independently in-
fluence (infect) its susceptible neighbors, and cannot acti-
vate neighbors in subsequent rounds. While in the LT model,
the sum of incoming edge influence degrees on any node is
assumed to be at most 1 and every node has an activation
threshold uniformly at random from [0, 1]. At each time step,
a node is activated by their activated neighbors if the sum of
influence degrees exceeds its threshold. In both models, the
influence propagates until no more nodes can become active.

Multiple Source Detection Problem

The multiple source detection problem studied in this paper
can be formulated as follows: Given a social network G =
(V,E), an infection node vector Y = (Y1, . . . , Y|V |) where
Yi = 1 indicates node i is infected and Yi = −1 otherwise,
the goal is to find the original infection source set S ⊂ V .

Note that in the above definition, we do not assume the un-
derlying propagation model is known. As such, our method
is propagation model independent, which has a broader ap-
plication range compared to state-of-the-art methods.

The LPSI Method

We formally present our LPSI method (in Alg. 1) in this
section. The aim of LPSI is to identify the original infection
source number as well as source nodes of a partially infected
network, which can be achieved by the following three steps.

Step 1: Assign labels to the partially infected network
Label vector Gt, initiated with the infection node vector Y ,
is used to assign labels to the nodes at time t in network G. In
other words, at the beginning, we assign positive labels (+1)
and negative labels (-1) to infected and uninfected nodes in
the network, respectively.

Step 2: Label propagation on the network Before start-
ing label propagation, we should build a weight matrix
which decides the label propagation probability among
nodes. We build the weight matrix W on edge set E, where
Wij=1 represents there is an edge between node i and node
j. This matrix is further symmetrically normalized as S
(Line 2 in Alg. 1), in which Sij represents the label prop-
agation probability from node j to node i.

Based on the matrix S, we propagate labels on the net-
work iteratively. In each iteration, each node gets a fraction
of label information from its neighborhood, and retains some
label information of its initial state. Therefore the label value
of node i at time t+1 becomes:

Gt+1
i = α

∑

j:j∈N (i)

SijGt
j + (1− α)Yi (1)

where 0 < α < 1 is the fraction of label information
that node i gets from its neighbors, and N (i) represents the
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Algorithm 1 Label Propagation based Source Identification
(LPSI)
Input: The infected network G=(V,E), parameter α ;

The initial infection node vector Y .
Output: The source set S .

1: Form the weight matrix W defined by Wij = 1 if there
exists an edge connecting nodes i and j;

2: Construct the matrix S = D−1/2WD−1/2, where D is
a diagonal matrix with its (i,i)-element equal to the sum
of the i-th row of W ;

3: Gt=0 ← Y ;
4: while Gt does not reach the convergence G∗ do
5: for each node i do
6: Gt+1

i = α
∑

j:j∈N (i) SijGt
j + (1− α)Yi;

7: end for
8: t = t+ 1 ;
9: end while

10: S = {} ;
11: for each original infected node i do
12: if G∗

i > all i’s neighbors’ G∗ value then
13: S = S ∪ {i};
14: end if
15: end for
16: return S ;

neighborhood of node i. We can stop this iteration when con-
vergence is reached. Here, “convergence” means the label
values of nodes will not change in several successive itera-
tions of label propagation (the convergence analysis can be
found in the next section).

Step 3: Sources Identification Suppose the label vector
Gt finally converges to G∗ at the end of the above label prop-
agation process. One node i is identified as a source node if
it satisfies the following two conditions: 1) node i is an in-
fected node initially, i.e., Yi = 1; and 2) its final label value
G∗

i is larger than those of its neighbors.
The first condition reflects the fact that infected nodes are

more likely to be sources than uninfected ones. Although
this selection may miss a few recovered source nodes under
some propagation models such as the SIR model, it avoids
the confusion of the nodes which have never been infected.
The second condition ensures the detected sources should be
local maximum points in the label propagation result, which
keeps consistent with the primary idea of source promi-
nence. As such, these local maxima are determined by both
node infection status (labels) and network structure. More
explanations about the local maxima could be found in the
next section.

Algorithm Analysis

In this section, we analyze the properties of convergence
and local maxima in the label propagation process of LPSI.
In addition, we discuss the relationship between the idea of
source prominence and propagation models.

Convergence Analysis

In our LPSI method, the iteration equation of the label prop-
agation (Eq. 1) can be rewritten as Gt+1 = αSGt+(1−α)Y .
By the initial condition that G0 = Y , we have:

Gt = (αS)tY + (1− α)

t−1∑

i=0

(αS)iY. (2)

As proved in (Zhou et al. 2004; Wang and Zhang 2008),
the parameter 0 < α < 1 and normalized matrix S will
lead: limt→∞(αS)t = 0, and limt→∞

∑t−1
i=0(αS)

i = (I −
αS)−1, where I is an n × n identity matrix. Consequently,
the iteration will converge to:

G∗ = (1− α)(I − αS)−1Y. (3)

Therefore, the label propagation iteration in Algorithm 1
will finally converge. In addition, Eq. 3 shows that we can
obtain the convergence result directly without any iterations.

Local Maxima in Label Propagation

In our LPSI method, the convergence label vector G∗ mini-
mizes the following cost function (Zhou et al. 2004):

Q(G)=1

2

(
n∑

i,j=1

Wij

∥∥∥∥∥ Gi√
Dii

− Gj√
Djj

∥∥∥∥∥
2

+μ

n∑
i=1

‖Gi−Yi‖2
)
.

(4)
The first term of the right-hand side in the cost function

is the smoothness constraint, which means that label values
(i.e., infection status) should not change too much between
connected nodes. In this constraint, the difference between
two nodes is further normalized by their degrees, which
keeps consistent with the basic idea of source prominence,
i.e., the nodes surrounded by larger proportions of infected
nodes tend to have higher infected label values. Similarly,
the nodes surrounded by larger proportions of uninfected
nodes tend to have lower infected (i.e., higher uninfected) la-
bel values. Thus, the infected label values of nodes increase
as they get closer to source nodes. Intuitively, a “source” is
likely to be a local maximum point surrounded by a group
of neighboring nodes, whose infected label values decrease
with respect to their distance from the source.

The second term of the right-hand side in Eq. 4 is the fit-
ting constraint, which means that the final label propagation
result G∗ should not change too much from the original la-
bel assignment (i.e., initial infection status). This trade-off
between these two constraints is captured by the parameter
μ which has a linear relationship with the parameter α in
Eq. 3 (Zhou et al. 2004).

Source Prominence vs. Propagation models

In this section we revisit the aforementioned two types of
propagation models, i.e., infection models and influence
models. Regardless of different propagation models, nodes
close to source nodes would have a higher probability to
get infected (activated) than the nodes far away from source
nodes. It can be explained by the fact that the infection ini-
tially starts from source nodes, and is further propagated
to the rest of the network. Clearly, this phenomenon exists
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in the general propagation progress. Therefore, the source
prominence effect should hold in most existing propagation
models, which is further verified in our later experiments.
In addition, the same intuition has been adopted in several
existing studies, such as (Prakash, Vreeken, and Faloutsos
2012), (Shah and Zaman 2011) and (Zang et al. 2015).

Two Versions of Our Method
Based on the above convergence analysis, in this section, we
first present the convergent version of our method. Then, to
balance accuracy and efficiency, we further give the iterative
version of our method.

The Convergent Version

LPSI con is the convergent version of LPSI method. The
“convergent” means we get the convergence result of the la-
bel propagation (Lines 3 to 9 in Alg. 1), which can be ob-
tained either by the iteration procedure or by Eq. 3.

Time Complexity Algorithm 1 first builds two matrices
(Lines 1 and 2), and the running time is O(|E|), where E
is the edge set. Then it gets the convergence result of label
propagation (Lines 3 to 9), and the running time is O(N3) 1,
where N is the node number. Finally, it finds local maxima
(Lines 11 to 15), and the running time is O(L∗N), where L
is the average number of neighbors per node. Consequently,
the overall complexity of LPSI con is O(N3).

The Iterative Version

LPSI iter is the iterative version of LPSI method. The “iter-
ative” means the propagation result is obtained in a few iter-
ations (Lines 3 to 9 in Alg. 1), i.e., the iteration terminates
without considering whether convergence is guaranteed.

As shown above, getting the convergence result of label
propagation has high complexity (O(N3)), which may be
prohibitive for some practical applications. However, to cap-
ture the intuition of source prominence, the convergence re-
sult may not be necessary. Another quantity of interest is:
how many iteration steps are needed to capture this intu-
ition? In our later experiments, we show that a small itera-
tion number (5 in our evaluation) is enough.

Time Complexity The time complexity of the iterative
version of label propagation (Lines 3 to 9 in Alg. 1) is
O(t∗L∗N), where L is the average number of neighbors per
node and t is the number of iterations. In addition, the time
complexity of the other steps in Alg. 1 is O(|E| + L ∗ N).
Consequently, the overall time complexity of LPSI iter is
O(t ∗ L ∗ N). Note that, L ∗ N can be described by the
edge number |E|. Therefore, LPSI iter has a linear complex-
ity with respect to the number of edges.

Experiments

Experimental Setup

Datasets As stated in Table 1, we use the following three
real-world datasets:

1Here we actually calculate the convergence by Eq. 3, and
adopt the fact that time complexity of matrix inversion is close to
O(N3) (Zhu, Lafferty, and Rosenfeld 2005).

Table 1: Datasets
Dataset #Nodes #Edges #avg(degree)
KARATE 34 78 4.6
Jazz 198 2, 742 27.7
Ego-Facebook 4, 039 88, 234 43.7

1. KARATE (Zachary 1977) is a social network of friend-
ships between 34 members of a karate club at a US uni-
versity in the 1970s.

2. Jazz (Gleiser and Danon 2003) is a network of Jazz bands
performing from 1912 to 1940.

3. Ego-Facebook (Leskovec and Mcauley 2012) is a Face-
book graph dataset obtained from survey participants.

Propagation models As mentioned above, existing prop-
agation models can be categorized into infection models
and influence models. To evaluate our method extensively,
in each of these categories, we consider two representative
propagation models. We test two different infection models:
SI model and SIR model. As the same in (Zhu and Ying
2016; Luo 2015; Zhu and Ying 2014), the infection prob-
ability p is chosen uniformly from (0, 1) for the SI model,
and an extra recovery probability q is chosen uniformly from
(0, p) for the SIR model.

In addition, we evaluate two different influence models:
IC model and LT model. In the IC model, the infection prob-
ability p is chosen uniformly from (0, 1). In the LT model,
as in (Kempe, Kleinberg, and Tardos 2003), we treat the in-
fection weights among nodes as follows. If nodes u, v have
degrees du and dv , then the infection weight of edge (u,v)
is 1/dv , and edge (v, u) has weight 1/du. Furthermore, the
threshold of each node is uniformly chosen from a small in-
terval [0, 0.5], so as to infect a large part of the network 2.

Comparing Methods We test the convergent version
(LPSI con) and the iterative version (LPSI iter) of our
LPSI method under both SI and SIR models. Under the
SI model, we compare these two versions with Net-
Sleuth (Prakash, Vreeken, and Faloutsos 2012). Under the
SIR model, we compare these two versions with Zang’s
method (Zang et al. 2015). In addition, a variant of Zang’s
method (denoted as Zang si 3) is tested under the SI model.
To date, these comparing methods are the latest and most
well-known solutions for the multiple source detection prob-
lem.

Since there are few (comparable) works under the IC and
LT models, we only test LPSI con and LPSI iter here. An
overview of this comparison can be found in Table 2.

In both LPSI con and LPSI iter, we set the parameter
α=0.5. In addition, to show the effectiveness of LPSI iter,
its iteration number is set to a small one (5 in this study). All

2 (Chen, Wang, and Yang 2009) and (Kempe, Kleinberg, and
Tardos 2003) have shown that if the threshold is chosen from [0, 1],
it is hard for a small set of sources to infect a large part of network.

3The original Zang’s method is just designed for the SIR model,
in which recovered nodes should be identified first. We can ignore
this recovery step and use the remaining steps to detect sources
under the SI model.
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Figure 2: Source detection accuracies under infection models,
i.e., SI model (row 1) and SIR model (row 2).
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Figure 3: Source detection accuracies under influence models,
i.e., IC model (row 1) and the LT model (row 2).

Table 2: Comparing Methods under Infection Models
Method SI model SIR model IC model LT model
LPSI con

√ √ √ √
LPSI iter

√ √ √ √
NetSleuth

√
Zang

√
Zang si

√

parameters in other methods are adjusted to achieve the best
performance.

All algorithms are implemented in Matlab. The program
runs on a server with Intel(R) Core(TM) i7-2600 3.40GHz
CPU and 32 GB memory.

Experimental Settings For an extensive comparison, we
compare these methods on all datasets with different source
numbers. For the small datasets KARATE and Jazz, we vary
the source number K=2, 3, 5. For the other larger dataset
Ego-Facebook, we vary the source number K=3, 5, 10,
which is known to be the largest source number that has
been evaluated (Prakash, Vreeken, and Faloutsos 2012;
Zang et al. 2015).

All reported results are averaged over 500 independent
runs. In each run, we first randomly generate a set of sources
in the dataset. As the same in (Prakash, Vreeken, and Falout-
sos 2012), we then simulate an infection till at least 30%4 of
the network is infected, and give the resulting footprint as
input. Finally, we use different methods to detect the source
set so as to evaluate their performance.

Evaluation of Source Detection

We compare the source detection accuracy of different meth-
ods. The standard recall, precision and F-score metrics are
used to validate this accuracy by comparing the detected

4Since KARATE is a small dataset compared to the tested
source numbers, we set the max infect rate to 50% for this dataset.

source set with the actual source set. Figures 2 and 3 show
the experimental results under infection models and influ-
ence models, respectively. Due to space constraints, we only
show the F-score of these methods, and the complete listing
of results is available on the author’s homepage.

Evaluation under Infection Models Figure 2 shows the
experimental results under the SI model and SIR model. The
first observation is that even without knowing the underlying
infection model, LPSI con and LPSI iter still significantly
outperform NetSleuth and Zang’s methods. This superiority
becomes more remarkable as the network size increases. On
the small datasets (KARATE and Jazz), in terms of F-score,
LPSI con and LPSI iter outperform the other two methods
by 50%∼200% relatively. On the other larger dataset (Ego-
Facebook), the outperformance is more pronounced (around
100%∼500% relatively). The reason may be that our LPSI
method is designed based on the idea of source prominence
which holds under commonly used infection models. In
contrast, the other two methods fail to identify the correct
sources in most cases. As stated in (Prakash, Vreeken, and
Faloutsos 2012), NetSleuth tends to return the most likely
“sources” which could re-produce the given infected net-
work, rather than real sources. On the other hand, experi-
mental results in (Zang et al. 2015) also show that Zang’s
method can hardly locate the real sources, but could only lo-
cate “approximate sources” near the real sources even when
the source number is given.

The second observation is that LPSI con and LPSI iter
could handle the multiple source detection problem under
both SI and SIR models. As shown in Fig. 2, when the epi-
demic model switches from the SI to SIR model, the results
of F-score only suffer a slight decline. This indicates that the
source prominence exists under both infection models, al-
though it seems a little less significant under the SIR model.

The third observation is that even under a small iteration
number setting (5 in our experiments), LPSI iter is still com-
petitive with LPSI con. This means that the source promi-
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Figure 4: Scalability on synthetic data.

nence could be easily captured by LPSI iter in a few itera-
tion steps. It also indicates this iterative version has a good
time performance, which is verified in the following experi-
ments.

Evaluation under Influence Models Figure 3 shows the
performance of LPSI con and LPSI iter under the IC model
and LT model. We can see that our proposed methods still
reach the similar performance under these two influence
models, which indicates that the source prominence could
also be easily captured by LPSI iter under influence models.

The other observation is that the performance of LPSI con
and LPSI iter does not vary a lot between infection models
and influence models. For instance, in KARATE and Ego-
Facebook datasets, the F-score values of these two meth-
ods are very similar. Although the performance of these two
methods declines in the Jazz dataset under the LT model,
we also find that the detection accuracy would be similar as
that under the IC model when the activation threshold in LT
model is uniformly chosen from other values such as [0, 0.2]
or [0, 0.4]. These results indicate that the source prominence
effect exists under the general propagation models.

Scalability

Scalability analysis is performed on the synthetic scale-free
networks (Barabási and Albert 1999) under the SI model.
The performance under other models is similar, so we omit
it here. We vary the number of nodes in the network and
test the elapsed time. Figure 4 shows the results. Zang’s
method is the most computationally intensive algorithm,
which contains the leading eigenvector based community
detection (Zang et al. 2015; Wang et al. 2015) and between-
ness centrality calculation. As expected, the convergence
method LPSI con is also time-costly. In contrast, the time
costs of both LPSI iter and Netsleuth increase similarly and
slowly with the increase of the network size. This is because
they both have linear complexity with respect to the number
of edges of the network. In addition, LPSI iter can always
keep significantly lower time cost than NetSleuth.

Impact of Parameter α

The parameter α in our method (Eq. 1) is introduced to con-
trol the effects from neighbors during the label (infection
status) propagation process. Therefore, we investigate the
impact of α via analyzing how its changes would affect the
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Figure 5: Parameter α in LPSI con on Ego-Facebook with
K=5.

performance of LPSI con in terms of F-score. (The perfor-
mance of LPSI iter is similar, so we omit it here for the limi-
tation of space.) Figure 5 shows the results on Ego-Facebook
(#source=5) under all four mentioned propagation models.

We observe that no matter under which propagation
model setting, the F-score values decrease when α ap-
proaches 0 or 1. On the other hand, the performances with
α ∈ [0.2, 0.6] are always stable and preferred. These obser-
vations confirm with the intuition that we should consider
both the initial infection status and the effects from neigh-
bors for source detection.

Related Work

The information source detection problem has been exten-
sively studied recently. In general, existing work can be di-
vided into two categories. The first category focuses on the
single source detection problem. (Shah and Zaman 2010;
2011) introduced and formalized the problem of identifying
the single source of an epidemic under the SI model. (Zhu
and Ying 2013) studied the single source detection problem
under the SIR model. (Zhu and Ying 2014) further stud-
ied this problem with sparse observations, and (Shen et al.
2016) considered the infection time information.

The second category focuses on the multiple source de-
tection problem. (Lappas et al. 2010) studied the problem
of identifying K effectors under the IC model, in which
the source number K should be specified manually. (Luo,
Tay, and Leng 2013) considered the multiple source detec-
tion problem under the SI model, when the number of in-
fection sources is bounded. The work most related to ours
is (Prakash, Vreeken, and Faloutsos 2012) and (Zang et al.
2015), which could automatically identify the source num-
ber as well as the actual source nodes under the SI model
and SIR model, respectively.

Contrary to assuming that the underlying propagation
model is fixed and given as input, we consider the multi-
ple source detection problem when the propagation model is
unknown in this work.

Conclusion

In this paper, we study the multiple source detection problem
when the underlying propagation model is unknown. Based
on the idea of source prominence, we introduce a multiple
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source detection method LPSI. In addition, both the conver-
gent and iterative versions of LPSI are given. Extensive ex-
perimental results show that even without knowing the un-
derlying propagation model, these two versions still attain
high accuracy in detecting the source nodes. In particular,
the iterative version of LPSI achieves high scalability as
well as superior performance. These inspiring results indi-
cate that this work expands the application range of multiple
source detection methods.
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the spread of influence through a social network. In Proceed-
ings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, 137–146. ACM.
Lappas, T.; Terzi, E.; Gunopulos, D.; and Mannila, H. 2010.
Finding effectors in social networks. In Proceedings of the
16th ACM SIGKDD international conference on Knowledge
discovery and data mining, 1059–1068. ACM.
Leskovec, J., and Mcauley, J. J. 2012. Learning to discover
social circles in ego networks. In Advances in neural infor-
mation processing systems, 539–547.
Luo, W.; Tay, W. P.; and Leng, M. 2013. Identifying infec-
tion sources and regions in large networks. IEEE Transac-
tions on Signal Processing 61(11):2850–2865.

Luo, W. 2015. Identifying infection sources in a network.
Ph.D. Dissertation, Nanyang Technological University.
Prakash, B. A.; Vreeken, J.; and Faloutsos, C. 2012. Spot-
ting culprits in epidemics: How many and which ones?
In IEEE 12th International Conference on Data Mining
(ICDM), 11–20. IEEE.
Shah, D., and Zaman, T. 2010. Detecting sources of com-
puter viruses in networks: theory and experiment. In ACM
SIGMETRICS Performance Evaluation Review, volume 38,
203–214. ACM.
Shah, D., and Zaman, T. 2011. Rumors in a network:
Who’s the culprit? IEEE Transactions on Information The-
ory 57(8):5163–5181.
Shen, Z.; Cao, S.; Wang, W.-X.; Di, Z.; and Stanley, H. E.
2016. Locating the source of diffusion in complex networks
by time-reversal backward spreading. Physical Review E
93(3):032301.
Wang, F., and Zhang, C. 2008. Label propagation through
linear neighborhoods. IEEE Transactions on Knowledge
and Data Engineering 20(1):55–67.
Wang, M.; Wang, C.; Yu, J. X.; and Zhang, J. 2015. Commu-
nity detection in social networks: an in-depth benchmarking
study with a procedure-oriented framework. Proceedings of
the VLDB Endowment 8(10):998–1009.
Wang, Z.; Wang, C.; Pei, J.; Ye, X.; and Yu, P. S. 2016.
Causality based propagation history ranking in social net-
works. In IJCAI.
Zachary, W. W. 1977. An information flow model for con-
flict and fission in small groups. Journal of anthropological
research 452–473.
Zang, W.; Zhang, P.; Zhou, C.; and Guo, L. 2015. Locat-
ing multiple sources in social networks under the sir model:
A divide-and-conquer approach. Journal of Computational
Science.
Zhou, D.; Bousquet, O.; Lal, T. N.; Weston, J.; and
Schölkopf, B. 2004. Learning with local and global consis-
tency. Advances in neural information processing systems
16(16):321–328.
Zhu, K., and Ying, L. 2013. Information source detection in
the sir model: A sample path based approach. In Information
Theory and Applications Workshop (ITA), 2013, 1–9. IEEE.
Zhu, K., and Ying, L. 2014. A robust information source
estimator with sparse observations. Computational Social
Networks 1(1):1–21.
Zhu, K., and Ying, L. 2016. Information source detection
in the sir model: a sample-path-based approach. IEEE/ACM
Transactions on Networking 24(1):408–421.
Zhu, X.; Lafferty, J.; and Rosenfeld, R. 2005. Semi-
supervised learning with graphs. Carnegie Mellon Univer-
sity, Language Technologies Institute, School of Computer
Science.

223




