
1

Edge2vec: Edge-based Social Network Embedding

CHANGPING WANG, Tsinghua University
CHAOKUN WANG, Tsinghua University
ZHENG WANG, Tsinghua University
XIAOJUN YE, Tsinghua University
PHILIP S. YU, University of Illinois at Chicago

Graph embedding, also known as network embedding and network representation learning, is a useful
technique which helps researchers analyze information networks through embedding a network into a low-
dimensional space. However, existing graph embedding methods are all node-based, which means they can
just directly map the nodes of a network to low-dimensional vectors while the edges could only be mapped to
vectors indirectly. One important reason is the computational cost, because the number of edges is always
far greater than the number of nodes. In this paper, considering an important property of social networks,
i.e., the network is sparse, and hence the average degree of nodes is bounded, we propose an edge-based
graph embedding (edge2vec) method to map the edges in social networks directly to low-dimensional vectors.
Edge2vec takes both the local and the global structure information of edges into consideration to preserve
structure information of embedded edges as much as possible. To achieve this goal, edge2vec first ingeniously
combines the deep autoencoder and Skip-gram model through a well-designed deep neural network. The
experimental results on different data sets show edge2vec benefits from the direct mapping in preserving the
structure information of edges.
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1 INTRODUCTION
With the development of information technology, more and more data are stored in information
networks, e.g., online social networks, protein-protein interaction networks and citation networks.
Analyzing these information networks has been attracting increasing attention from both academia
and industry. Because most information networks are large and have millions of nodes, one useful
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Fig. 1. The difference between node-based and edge-based graph embedding methods when dealing with
analysis tasks on edges.

technique called graph embedding [2, 30], which is also known as network embedding and network
representation learning, is proposed to help us analyze large information networks. A graph
embedding method embeds a network into a low-dimensional space through mapping each node
in the network to a low-dimensional vector. Thus, the embedded network can be processed in
follow-up analysis tasks, e.g., link prediction [22] and node clustering [32], through vector-based
machine learning algorithms.

However, existing graph embedding methods are all node-based, which means the edges in the
network cannot be mapped to low-dimensional vectors directly. There are some indirect methods
to represent edges through existing graph embedding methods. For instance, node2vec [9] uses the
Hadamard product of the two vectors which denote the source node and the target node of an edge
to represent the edge. We argue that representing edges in a direct approach is very important,
because an edge representation vector generated from the embedding vectors of its endpoints
cannot preserve the complete properties of this edge. Thus, the analysis tasks on edges, such as
link prediction, cannot achieve the best performance based on these indirect approaches.
Figure 1 shows the difference between node-based and edge-based graph embedding methods

when dealing with analysis tasks on edges. The node-based methods focus on the nodes and
their corresponding properties, e.g. the node proximity [30]. The embedding result can be used
for analysis tasks on edges through generating edge embedding vectors. However, edge-based
graph embedding methods can directly embed edges in the network by focusing on the properties
w.r.t. edges (e.g. the edge proximity from the aspect of structure information).

The drawback of an edge-based graph embedding method may be its computational cost, since
the number of edges is far greater than that of nodes in a general network. However, in social
networks, one very important category of information networks, the average degree of nodes is
bounded [32]. That means the computational costs of edge-based embedding methods on these
networks are acceptable. Moreover, there are a lot of studies on the attribute of edges in social
networks, which are also called social ties. For example, Gilbert et. al. [8] classify the social ties
to strong ones and weak ones, Ye et. al .[43] study tie sign prediction problem on signed social
networks, and Zhang et. al. [46] propose a framework to recover the directions in undirected social
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Fig. 2. Edges (A,C) and (A,D), and edges (E,H ) and (F ,H ) both have similar local structure information.
Edges (E,C) and (F ,D) have similar global structure information.

networks. Thus, an edge-based graph embedding method for social networks is necessary and
feasible.
In this paper, we propose the first edge-based social network embedding method, which is

called edge2vec. Similar to existing graph embedding methods, edge2vec considers only the
structure information of a social network, which makes it easy to apply to different social networks
with various content information. Edge2vec is designed to preserve both the local and the global
structure information of edges. As shown in Figure 2, edges (A,C) and (A,D) share the same
source node A, and thus we think the two edges must be similar to each other from the aspect of
local structure information. For the similar reason, edges (E,H ) and (F ,H ) also have the similar
local structures. Edges (E,C) and (F ,D) share neither source node nor target node, which means
their local structures are totally different. However, E and F have similar neighborhood structures,
i.e. they both have four neighbors and share three of them (G, H and I ), and so do C and D. Thus,
edges (E,C) and (F ,D) play similar roles in the network, and we think they should be similar from
the aspect of global structure information of the network. To achieve the goal of preserving both the
local and the global structure information, edge2vec first ingeniously combines the characteristics
of deep autoencoder [29] and Skip-gram model [26] through a well-designed deep neural network.

It is worth noting that running a node-based network embedding method on the line graph [12]
is a trivial way to obtain the embedding vectors of edges in the original graph. The line graph of
a graphG is another graph, denoted as L(G), that represents the adjacencies between edges ofG.
The nodes in L(G) corresponds to the edges in G, and two edges in L(G) are adjacent if and only if
the corresponding edges inG are connected (in directed graphs, two edges like (u,v) and (v,w) are
connected). However, it is hard to capture the global structure information of the original graph
based on the line graph. For instance, as we discussed before, the edges (E,C) and (F ,D) in Figure
2 have similar global structure information. But if we construct the line graph, we can find that
the two nodes corresponding to (E,C) and (F ,D) are neither adjacent themselves nor connected to
similar neighbors, which means existing node-based embedding methods cannot consider these
two nodes of line graph similar to each other. Thus, simply running the node-based embedding
methods on the line graph cannot help us preserve the global structure information.

The main contributions of this paper are summarized as follows:
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• We propose a novel graph embedding problem which aims to embed a social network into a
low-dimensional space through mapping all the edges in the network to low-dimensional
vectors. The embedding vectors apply to all the analysis tasks on the edges of social networks.
• We propose edge2vec to address the edge-based social network embedding problem. It
employs a well-designed deep neural network with multiple deep autoencoders, to embed
social networks with both the global and the local edge proximity preserved.
• We conduct experiments to compare edge2vec with state-of-the-art node-based graph em-
bedding methods. The experimental results show that edge2vec can preserve more structure
information of edges than the node-based graph embedding methods.

The rest of this paper is organized as follows. The related work is discussed in Section 2. In
Section 3, we present the definition of our problem, i.e. edge-based social network embedding. We
propose our edge-based embedding model, edge2vec, in Section 4. The experimental results about
edge2vec are demonstrated in Section 5. At last, Section 6 concludes this paper.

2 RELATEDWORK
In this section, we survey lines of related work.

2.1 Node-based graph embedding methods
There exist some classical graph embeddingmethods based on dimensionality reduction of Laplacian
or the adjacency matrices, such as LLE [28], IsoMAP [31] and Laplacian Eigenmaps [2]. However,
they suffer from heavy computational costs and performance drawbacks.
Some recent studies utilize the deep learning technique to perform dimensionality reduction.

SAE [32] employs a stacked sparse autoencoder to transform the adjacency matrix into a low-
dimensional space. DNR [41] also utilizes a stacked autoencoder, but it uses the modularity matrix
as the input. A Siamese network consisting of two deep autoencoders is used in SDNE [34] to
preserve both the first-order proximity and the second-order proximity of nodes.

Meanwhile, many graph embedding methods with the Skip-gram model, which is designed for
word representation [26], are proposed recently. They treat the nodes in a network as words in a
document, and adopt different approaches to capture the local “context” relationship between nodes.
DeepWalk [27] employs the truncated random walks to obtain the context information of nodes.
Node2vec [9] improves DeepWalk through replacing the truncated random walks with a new search
strategy which combines the property of BFS and DFS. LINE [30] considers the neighborhood of a
node as its context. GraRep [5] extends LINE by considering the indirect neighbors, but it suffers
from the length of embedding vectors.
Also, there exist some studies based-on matrix factorization. In [40], Yang et al. prove that

DeepWalk, which is based on the Skip-gram model, is actually equivalent to matrix factorization
and propose TADW, which incorporates text features into network representation learning under
the framework of matrix factorization. M-NMF [35] is a novel modularized nonnegative matrix
factorization model to incorporate the community structure into network embedding.
The variational autoencoder (VAE) [15] is a popular generative model to learn the latent rep-

resentations. Some recent studies [10, 16] are proposed to learn latent representations for graphs
based on VAE. They leverage GCN [17] as encoders, and thus they can naturally incorporate node
features.

The above are all unsupervised graph embeddingmethods. However, the unsupervised embedding
vectors lack the ability of discrimination when applied to supervised learning tasks, such as
node classification. Discriminative Deep Random Walk (DDRW) [20] and max-margin DeepWalk
(MMDW) [33] are supervised models which jointly optimize the classifier and the embedding
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model. They both aim to learn the embedding vectors that well capture the topological structure
and meanwhile are discriminative for the node classification tasks. RSDNE [36] is also a supervised
method. It approximately guarantees intra-class similarity and inter-class dissimilarity, obtaining
favorable performance in both the general and zero-shot graph embedding problems.
Xu et al. [39] focus on the coupled heterogeneous network, which consists of two different but

related sub-networks connected by inter-network edges. They propose a method named embedding
of embedding (EOE) for jointly embedding the coupled network, and the experimental result
shows the embedding result learned by EOE is better than that obtained through embedding the
sub-networks separately with baseline embedding methods.
Recently there is a study focusing on the edge representation [1]. However, the way in which

that study represents edges is far different from ours. It is actually an end-to-end link prediction
model based on the node-based embedding. It learns embedding vectors for nodes and an edge
function for edges. The edge function maps a node pair to a real value to present an edge. That
work is still a node-based network embedding method, and the edge function it learns does not
apply to tasks except link prediction. Therefore, it cannot solve our problem which is to learn the
representation vectors w.r.t. edges for general propose.

All the existing graph embedding models learn the representations only for nodes. Our proposed
method, edge2vec, first learns the edge representation vectors by ingeniously combining the
characteristics of the deep autoencoder and the Skip-gram model through a well-designed deep
neural network.

2.2 Analysis tasks on edges in social networks
The problem of link prediction [22] is a famous task related to edges in social networks. To solve this
problem, the traditional methods utilize local neighbor structure to measure the node proximity [22].
There are also some different methods, such as random walk methods [21, 47], kernel methods [18],
matrix factorization methods [7, 25], content-based methods [11, 24], and attribute-based methods
[45]. In [9], Grover and Leskovec employ the graph embedding method for the link prediction task.
Furthermore, a large and popular kinds of analysis tasks focusing on the natural attributes of

edges in social networks, i.e. social ties. In [8, 13], social ties are classified to strong ones and weak
ones, while some other studies [38, 44, 48] measure the strength of social ties in a quantitative
way. There are also some work, [19, 42, 43], which study the tie sign prediction problem on signed
social networks, e.g. Epinions, whose users can express trust or distrust of others. A recent and
novel study about social ties is about the directionality [46], which considers that the directions of
social ties are existing but hidden in undirected social networks, and proposes an unsupervised
framework, ReDirect, to recover the directions in undirected networks.

In this paper, we choose the tasks of link prediction, social tie direction prediction and social tie
sign prediction to show the advantages of edge2vec.

2.3 Knowledge graph embedding
Knowledge graphs are directed graphs whose nodes correspond to entities and edges represent
the rich relations between entities. Knowledge graph embedding methods model the knowledge
graphs through embedding the entities into a low-dimensional space [4], just like what network
embedding methods do. Inspired by [26], TransE [3] represents the relations as the translation
in the embedding space: If a triple (h, r , t) holds, where h and t are the head entity and the tail
entity w.r.t. the relationship r , the embedding of t should be close to the embedding of h plus the
embedding of r . TransE cannot model 1-to-N, N-to-1, and N-to-N relations, and some follow-up
methods (TransH [37] and TransR [23]) are proposed to address this issue.
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Although these knowledge graph embedding approaches can map the edges (relations) in a
knowledge graph to low-dimensional vectors, they do not apply to our edge-based network embed-
ding problem. The reason is that edges are of different types in knowledge graphs, and each type
of edges corresponds to a single embedding vector through knowledge graph embedding methods.
We want to learn different representations for different edges, but in social networks, edges are of
only one or a few types (e.g. friends or foes). Thus, existing knowledge graph embedding methods
cannot be used in our problem.

3 PROBLEM DEFINITION
In this section, we give some useful concepts as well as the formal description of the edge-based
social network embedding problem.
Definition 1 (Social network). A social network is denoted as a directed graph G = (V , E),

where V is the node set and E is the edge set. Each node v ∈ V represents an individual. Each edge
e ∈ E is an ordered node pair e = (s, t) (s, t ∈ V ), which represents a social tie from s to t , and s and t
are called the source node and the target node of e , respectively.

In the above definition, we use a directed graph to represent the structure of the social network.
For directed social networks, this approach is natural. Moreover, for an undirected social network,
it is also easy to represent it with a directed graph through mapping each undirected social tie with
two opposite directed edges. Then, we define the local and the global proximity between edges as
follows.
Definition 2 (Local edge proximity). For two edges e1 = (s1, t1) and e2 = (s2, t2), if t1 = t2 or

s1 = s2, the local edge proximity of e1 to e2 is 1, otherwise it is 0.
The local edge proximity between two edges is calculated depending on the relationship of

source nodes and target nodes of the two edges. We believe that two edges which share the common
source node or the common target node should be similar to each other from the view of local
structure information of a network.
As we described above, for an undirected social network, we represent each of its undirected

edges through two directed edges. Thus, if there are two undirected edges e1 = (s, t) and e2 = (s, r ),
we can represent them as four directed edges: e11 = (s, t), e12 = (t, s), e21 = (s, r ) and e22 = (r , s).
For edge pairs (e11, e21) and (e12, e22), the local edge proximity between the two edges of each pair
is 1. However, the local edge proximity between the two edges of any other edge pair taken out of
these four directed edges, e.g., the edge pair (e12, e21), is 0.
Definition 3 (Global edge proximity). For an edge e = (s, t), we use a neighborhood vector

ne = (ws1, ..., ws |V |,wt1, ...,wt |V |) to represent its neighborhood structure, wherewi j ∈ [0, 1] denotes
the neighborhood relationship between nodes i and j , and can be defined in different ways. The global
edge proximity between two edges e1 and e2 is defined as the similarity of ne1 and ne2 .

If two edges have similar neighborhood vectors, we consider they play similar roles in commu-
nicating nodes in the network, and they should be similar from the global view of the network
structure. The detailed discussion about the neighborhood relationship as well as the similarity
metric for neighborhood vectors is presented in Section 4.2. Last, the definition of edge-based social
network embedding is as follow.
Definition 4 (Edge-based social network embedding problem). Given a social network

G = (V , E), the aim of edge-based social network embedding is to represent each edge e ∈ E in a
low-dimensional space Rd (d ≪ |E |). The local and the global proximity between all the edges should
be preserved as much as possible after mapping all the edges into Rd .
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4 METHOD
In this section, we present how edge2vec embeds a social network with both the local and the
global proximity preserved. First, we present the framework of edge2vec, i.e. a deep neural network
consisting of multiple deep autoencoders which share the same structure and parameters. Next, we
preserve the global edge proximity between edges through minimizing the reconstruction error of
neighborhood vectors with the deep autoencoder. Then, we preserve the local edge proximity by
maximizing the “co-occur" probability of two edges sharing the same source/target node under the
skip-gram model. After that, we propose the element-wise joint loss for the deep neural network of
edge2vec, and discuss how to embed a social network with edge2vec. Last, we analyze the time
and space complexity of edge2vec.

4.1 The framework of edge2vec
The framework of edge2vec is shown in Figure 3. We employ a deep neural network consisting of
multiple deep autoencoders which share the same structure and parameter Θ.

For each deep autoencoder, its input is the neighborhood vector of a given edge. Meanwhile, it has
two outputs. The first output is the representation vector in the middle of the the deep autoencoder,
which is the embedding vector for the given edge. The second one is the reconstructed vector in the
top of it.
The input of the complete deep neural network is a group of edges ep = (e, e ′, en,1, ...en,λ) and

their corresponding neighborhood vectors. In ep, e and e ′ is a pair of edges between which the
local edge proximity is 1, and en,1, en,2, ..., en,λ are λ negative samples, which means the local edge
proximity between e and each of them is 0.
First, for each edge, we assign it to a deep autoencoder in the neural network, and define the

loss Lglobal, which is a variant of the reconstruction error for ordinary deep autoencoders, based
on the reconstructed vector and the neighborhood vector for this edge to ensure the representation
vector can preserve the property of the neighborhood vector.
Next, we define the loss Llocal on the embedding vectors of all the edges in the group. The

definition of Llocal, inspired by the Skip-gram model [26], tries to make the embedding result by the
neural network preserve the local edge proximity, i.e. we would like the proximity of e to e ′ after
embedding is close and that of e to en,i (i ∈ 1, 2, ..., λ) is far.
Then, we obtain a joint loss function for the input edge group through combining Lglobal and

Llocal. By minimizing this joint loss, we learn the shared parameter Θ for the deep autoencoders.
Finally, each edge in the network can be embedded to a vector through the deep autoencoder

with parameter Θ.
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Notation Meaning
wi j neighborhood relationship between nodes i, j
Ai j adjacency relationship between nodes i, j
N depth of the deep autoencoder
x (n)e representation vector for edge e in the n-th layer
y(n)e reconstructed vector for edge e in the n-th layer
x (0)e input vector for edge e
y(0)e final reconstructed vector for edge e

x (N )e ,y
(N )
e , ®e embedding vector for e

W (n),b(n) encoder parameters in the n-th layer
M (n),d (n) decoder parameters in the n-th layer

Θ deep autoencoder parameter consisting of {W (n),b(n),M (n),d (n)}n∈1,2, ...,N
k distance of the furthest indirect neighbor taken into consideration
β decaying factor for indirect neighbor
p penalty factor for non-zero values when calculating reconstruction error
λ the number of negative samples
α combination factor
(e, e ′) an edge pair between which the local edge proximity is 1
{en,i }

λ
i=1 negative samples w.r.t. (e, e ′)

m the number of examples for training
Table 1. Notations

Before introducing the details of edge2vec in the next subsections, we define some of the
notations which are used later in Table 1.

4.2 Preserving the global edge proximity
We first discuss how to capture the existing global edge proximity in a social network. In Definition
3, the global edge proximity between two edges is the similarity of their neighborhood vectors,
which contains neighborhood relationship between the source/target node of the edge and each
node in the graph. Thus, calculating the neighborhood relationship between two arbitrary nodes is
the key step to capture the global edge proximity between the two edges of each edge pair.

4.2.1 Neighborhood relationship. Some existing graph embedding methods [30, 32, 34] use the
adjacency relationship, i.e.,

wi j = Ai j =

{1 i f (i, j) ∈ E

0 otherwise
. (1)

This approach cannot represent the indirect neighborhood relationship between two nodes, and
thus it cannot capture the global edge proximity well.
GraRep [5] considers the k-step neighbor relationship between nodes. It proposes the k-step

probability transition matrix Ak , where Ak
i j exactly refers to the transition probability from node i

to node j between which the transition consists of exactly k steps. Given the maximum step length
K , each Ak (k ≤ K) is used separately, and K embedding vectors corresponding to the same node
are concatenated to form the final vector, which means the length of the final embedding vectors is
far longer than that of other embedding methods. Thus, this approach is not appropriate, either.
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ALGORITHM 1: Calculating the k-step adjacent matrixwk .
Input: The social network G = (V , E) with the adjacent matrix A, and the step length k (k ≤ 2).
Output: The k-step adjacent matrixwk .

1 w1 ← A;
2 for n from 2 to k do
3 wn ← wn−1;
4 for each (i,m) thatwn−1

im , 0 do
5 for each j thatw1

mj , 0 do
6 wn

i j ←max(wn
i j ,w

n−1
im ×w1

mj × β);
7 end
8 end
9 end

10 Outputwk .

In edge2vec, we employ a k-step adjacency relationship to describe the neighborhood relation-
ship of two nodes

w1
i j = Ai j ,

wk
i j = max

(
max
m
(wk−1

im ×w
1
mj × β),w

k−1
i j

)
,

(2)

where β is the decaying factor for each step.wk is a k-step adjacency matrix, wherewk
i j reflects

the strength of neighborhood relationship in k steps between nodes i and j. If there exists a path
from i to j within k steps,wk

i j will be larger than 0. The shorter the path is, the largerwk
i j will be.

We do not need k separate values to represent the neighbor relationship between i and j like [5].
Thus, this approach considers indirect neighborhood relationship as well as avoids the increase of
the length of embedding vectors. The computation ofwk is shown in Algorithm 1. The worst time
complexity of this algorithm is O(n3) when G is a complete graph. However, as we mentioned in
the introduction, the average degree of a social network is bounded. Thus, the practical time cost
of this algorithm is far less than the worst case.
We have introduced how to calculate the neighborhood relationship for two nodes. Now we

are able to generate the neighborhood vector for each edge. According to Definition 3, the global
proximity between two edges is defined as the similarity between their neighborhood vectors.
However, there exist various similarity metrics for vectors. If we want to preserve the global
proximity under various vector similarity metrics, we must preserve the characteristics of neigh-
borhood vectors as much as possible. Inspired by [32, 34], we use a deep autoencoder to transform
neighborhood vectors to low-dimensional representation vectors. We believe that it can preserve
the characteristics of the neighborhood vector for each edge well after transforming.

4.2.2 Deep autoencoder. A deep autoencoder [29] contains multiple nonlinear transformations in
both the encoder and the decoder. As shown in Figure 3, there are multiple deep autoencoders in
edge2vec, which all share the same structure and the parameters. We take the first of them as an
example. Its input is x (0)e which represents the neighborhood vector of the given edge e .

x (0)e = ne = (w
k
s1, ...,w

k
s |V |,w

k
t1, ...,w

k
tN ) (3)

where (s, t) = e . The encoder is as follows:

x (n)e = σ
(
W (n)x (n−1)e + b(n)

)
, n = 1, 2, ...,N , (4)
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whereW (n) and b(n) are the weights and bias of the n-th layer in the encoder, σ is the sigmoid
function, and N is the depth of the deep autoencoder.
The vector x (N )e is the representation vector for the neighborhood vector of e , and is also the

embedding vector for e .
Let y(N )e = x (N )e . The decoder is as follows:

y(n−1)e = σ
(
M (n)y(n)e + d

(n)), n = 1, 2, ...,N , (5)

whereM (n) and d (n) are the weights and bias of the n-th layer in the decoder. The vector y(0)e is the
reconstructed vector based on the representation vector x (N )e .

The loss function of this deep autoencoder is defined as follows:

Lglobal(e,Θ) = ∥(y
(0)
e − x

(0)
e ) ◦ Ie ∥

2
2 , (6)

where ◦ is the Hadamard product and Ie is the indicator vector for x (0)e [34]. Let Ie = {Ie ,i }2 |V |i=1 , x
(0)
e =

{x (0)e ,i }
2 |V |
i=1 , and Ie is defined as follows:

Ie ,i =

{
p i f x (0)e ,i > 0
1 otherwise

, (7)

where p > 1 is the penalty factor.
As we know, social networks are often very sparse, and thus the neighborhood vectors for

edges are sparse too. Obviously, we care about the non-zero values more than the zeros, and thus
we would like to have representation vectors which are able to reconstruct as many as possible
non-zero values in the neighborhood vectors. Through introducing the indicator vector, we add
penalty on the reconstruction error of the non-zero values in Eq. 6.

Throughminimizing the loss defined in Eq. 6, we can learn the parameters of the deep autoencoder
that can ensure the property of input neighborhood vectors preserved. Since the neighborhood
vectors can represent the global structure information well, the global edge proximity must be
preserved when we embed the social network with this trained deep autoencoder.

4.3 Preserving the local edge proximity
Now we present how to preserve the local edge proximity in this subsection.

4.3.1 Skip-gram. If the local edge proximity between edge e and e ′ is 1 but not 0, they must share
either the same source node or the same target node. We employ the Skip-gram [26] to model this
local structure property in networks like [5, 9]. We consider e as the “target edge" and e ′ as the
“context edge", and then we aim to maximize the probability that e generates e ′:

p(e ′ |e) =
exp(®e · ®e ′)∑ |E |
i=1 exp(®e · ®ei )

(8)

where ®e refers the embedding vector for edge e . Eq. 8 is defined under the assumption of “symmetry
in feature space" [9], which means the context vector and the target vector of an edge are both the
same as the embedding vector.

However, the denominator of Eq. 8 is hard to compute. We adopt the Negative sampling method
[26] to approximate the objective function as follows:

o(e, e ′) = logσ (®e · ®e ′) +
λ∑
i=1

Eei∼Pn (e)
(
logσ (−®e · ®ei )

)
(9)
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which takes place of logp(e ′ |e). In Eq. 9, Pn(e) is the noise distribution, and λ is the number of
negative samples.

4.3.2 Deep autoencoders with Skip-gram. In the previous subsection, we introduce how to learn
the parameters of a single deep autoencoder to embed edges with global edge proximity preserved.
Now we concatenate multiple deep autoencoders which share the same structure and parameters
(as shown in Figure 3), and discuss how to learn the shared parameters that can ensure the local
edge proximity preserved.
For a given edge pair (e, e ′) bwtween which the local edge proximity is 1, we draw λ negative

samples, i.e., (en,1, en,2, ..en,λ). We generate an input example, denoted as ep, for the complete deep
neural network in edge2vec, which consists of the neighborhood vectors corresponding to e , e ′
and the λ negative samples. The loss function for preserving the local edge proximity is defined
based on Eq. 9 as follows:

Llocal(ep,Θ) = − logσ
(
x (N )e · x (N )e ′

)
−

λ∑
i=1

(
logσ

(
− x (N )e · x (N )en,i

) )
, (10)

where we use the opposite form of the objective function in Eq. 9 to change the optimization goal
from maximizing o(e, e ′) to minimizing Llocal(ep,Θ). By minimizing this local loss function, we can
learn the shared parameters of deep autoencoders to preserve the local edge proximity.

4.4 Embedding social networks with edge2vec
Through combining the global loss in Eq. 6 for all the deep autoencoders with the local loss in
Eq. 10, the example-wise joint loss is defined as:

L(ep,Θ) = α
∑
c ∈ep

Lglobal(c,Θ) + (1 − α)Llocal(ep,Θ) , (11)

where α is the combination factor to balance the two parts of the joint loss.
To optimize the edge2vecmodel, we use the stochastic gradient descent to minimize the example-

wise joint loss L defined in Eq. 11, and thus we need to calculate the partial derivative of L w.r.t. the
parameter Θ.
First, the partial derivative of the joint loss L is shown as follows:

∂L(ep,Θ)

∂Θ
= α

∑
c ∈ep

∂Lglobal(c,Θ)

∂Θ
+ (1 − α)

∂Llocal(ep,Θ)

∂Θ
. (12)

Next, we study the term corresponding to the global loss, i.e. ∂Lglobal(c ,Θ)
∂Θ in Eq. 12. According to

Eq. 6, it can be calculated as follows:

∂Lglobal(c,Θ)

∂Θ
=
∂∥

(
y(0)c − x

(0)
c

)
◦ Ic ∥

2
2

∂y(0)c
·
∂y(0)c
∂Θ

= 2Ic ◦ Ic ◦
(
y(0)c − x

(0)
c

)
·
∂y(0)c
∂Θ

(13)

where x (0)c and y(0)c are the input vector and reconstructed vector for the deep autoencoder w.r.t. the
edge c , and Ic is the indicator vector for x (0)c . Thus, ∂y (0)c

∂Θ is the partial derivative of the reconstructed
vector for the deep autoencoder w.r.t. the autoencoder parameter Θ. According to the encoding
and decoding process defined in Eq. 4 and Eq. 5, ∂y (0)c

∂Θ is easy to be calculated based on the back
propagation method. Therefore, we can get ∂Lglobal(c ,Θ)

∂Θ .
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ALGORITHM 2: Embedding a social network with edge2vec.
Input: The social network G = (V , E), the structure of the deep autoencoder, the hyper parameters

α, β,k,p, λ,m.
Output: The embedding vectors for all e ∈ E.

1 Generate the neighborhood vector
(
x
(0)
e

)
for each e ∈ E;

2 Pre-train the deep autoencoder layer by layer through treating it as a stacked autoencoder to obtain a
good initial value of the deep autoencoder parameter Θ;

3 Samplem edge pairs whose local edge proximity is 1 uniformly to form a set EP ′;
4 for each edge pair (e, e ′) in EP ′ do
5 Draw λ negative edges, so that the local edge proximity between e and each negative edge is 0;
6 Generate an input example with (e, e ′) and the λ negative edges;
7 end
8 Combine examples into a set EP ;
9 repeat

10 for each example ep in EP do
11 for each edge e in ep do
12 Based on Θ, calculate the embedding vector x (N )e and the reconstructed vector y(0)e for e

according to Eq. 4 and Eq. 5;
13 end
14 Calculate the joint loss L with Eq. 11;
15 Update Θ through gradient decent and back propagation based on the partial derivate in Eq. 12;
16 end
17 until convergence;
18 for each edge e in E do
19 Transform e to embedding vector ®e = x

(N )
e with the learned Θ.

20 end
21 Output {®e}e ∈E .

Then, we focus on the term ∂Llocal(ep,Θ)
∂Θ in Eq. 12, which is corresponding to the local loss. Based

on Eq. 10, this term can be calculated as follows:

∂Llocal(ep,Θ)

∂Θ
=

∂

(
− logσ

(
x (N )e · x (N )e ′

)
−

∑λ
i=1

(
logσ

(
− x (N )e · x (N )en,i

) ))
∂Θ

=

(
x (N )e ′

(
σ
(
x (N )e · x (N )e ′

)
− 1

)
+

λ∑
i=1

x (N )en,i

(
σ
(
x (N )e · x (N )en,i

) ))
·
∂x (N )e

∂Θ

+

(
x (N )e

(
σ
(
x (N )e · x (N )e ′

)
− 1

))
·
∂x (N )e ′

∂Θ

+

λ∑
i=1

(
x (N )e

(
σ
(
x (N )e · x (N )en,i

) )
·
∂x (N )en,i

∂Θ

)
(14)

where ∂x (N )c
∂Θ (c = e, e ′, en,1, ...en,λ) is the partial derivative of the embedding vector for the edge c

w.r.t. the deep autoencoder parameter Θ. Similar to the calculation of ∂y (0)c
∂Θ in Eq. 13, ∂x (N )c

∂Θ can be
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obtained through the back propagation on the deep autoencoder. Hence, we can calculate the term
∂Llocal(ep,Θ)

∂Θ in Eq. 12.
Finally, combining Eq. 13 and Eq 14, we obtain the partial derivative of the joint loss in Eq. 12

w.r.t. the deep autoencoder parameter Θ.
Algorithm 2 shows the pseudo-code of embedding a given social network with edge2vec. We

first generate the neighborhood vector for each edge (Line 1). Next, we use a greedy layer-wise
pre-training process to find a good initial value of Θ (Line 2). Then, we samplem edge pairs (Line
3), which is similar to the random walk process in DeepWalk and the edge sampling in LINE, and
generate examples based on the edge pairs with negative sampling method (Lines 4 – 8). After that,
we train the edge2vec model through stochastic gradient descent and back propagation with the
joint loss defined in Eq. 11 (Lines 9 – 17). At last, we transform each edge to its embedding vector
with the learned Θ, and then we finish the edge-based network embedding (Lines 18 – 21).

4.5 Complexity analysis
In this subsection, the time and space complexity of edge2vec as well as some other graph embed-
ding methods (DeepWalk [27], Node2vec [9], LINE [30] and SDNE [34]) are presented.

For DeepWalk and Node2vec, they are both based on random walks, and the time complexity of
training is O(γtwd |V |), where γ is the iteration number, t is the maximum length of walks, w is
the window size of skip-gram, d is the dimension of embedding, and |V | is the number of nodes.
LINE does not need random walks, but leverages all the edges during the training process. Thus, its
time complexity is O(τd |E |), where τ is the iteration number and |E | is the number of edges. The
time cost of SDNE isO(τh |V | |E |), where h is the size of the first hidden layer. As for our edge2vec,
the training time cost is O(τhm |V |), where m is the number of sampled edge pairs. Since both
SDNE and edge2vec employ a deep neural network, they can easily speed up through training
with GPUs.

The memory cost of these embedding methods mainly depends on the number of parameters.
Thus, the space complexity of DeepWalk, Node2vec and LINE is O(d |V |), and that of SDNE and
edge2vec is O(h |V |).

5 EXPERIMENTS
In this section, we evaluate the effect of edge2vec. We first introduce the data sets and baseline
embedding methods in Section 5.1. Next, we conduct experiments on three analysis tasks for
edges, i.e. link prediction, social tie direction prediction and social tie sign prediction, to compare
edge2vecwith the baselines in Sections 5.2 – 5.4. Then, in Section 5.5, we analyze the edge proximity
preservation quantitatively. At last, we demonstrate the parameter sensitivity of edge2vec in
Section 5.6.

5.1 Experimental settings
We use six data sets collected from real-world social networks.

• Epinions [46]. This data set is extracted from the general consumer review site Epinions.com
as a who-trust-whom social network. The trust information is not considered in the data set.
• LiveJournal [46]. It is extracted from the LiveJournal online social network.
• Slashdot [46]. Slashdot allows users to tag each other as friends or foes. However, in this data
set, only the friend links are considered while the foe links are ignored.
• Tencent [46]. It is extracted from Tencent Weibo, a microblogging website in China.
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Data sets # Nodes # Edges Autoencoder Structure
Epinions 3,248 126,385 6,496 - 1,024 - 128

LiveJournal 5,192 115,358 10,384 - 1,024 - 128
Slashdot 10,428 344,862 20,856 - 4,096 - 512 - 128
Tencent 101,460 510,364 202,920 - 4,096 - 512 - 128

Epinions-sign 7,982 130,357 15,964 - 2,048 - 128
Wikipedia 7,125 107,080 14,250 - 2,048 - 128

Table 2. The statistics of the data sets.

• Epinions-sign [19]. This is also extracted from Epinions.com. Different from the first data
set, Epinions, this data set considers the trust and distrust between individuals, i.e. , this is a
signed network.
• Wikipedia [19]. This network corresponds to votes cast by Wikipedia users in elections for
promoting individuals to the role of admin. A signed edge from one user to another indicates
a positive or negative vote by the former on the promotion of the latter.

Notice that the above six data sets are all unweighted and directed social networks, and the first
four are unsigned while the last two are signed networks. The unsigned networks are used in the
experiments in Section 5.2 and Section 5.3, while the signed networks are used in the experiments
in Section 5.4 and Section 5.5, and experiments in Section 5.6 are conducted on all the networks.
The statistics of the networks we used in the experiments are shown in Table 2.

Four state-of-the-art graph embedding methods are used as baselines in the experiments.

• DeepWalk [27]: It is based on the Skip-gram model, and employs truncated random walks to
obtain the context information of nodes.
• Node2vec [9]: This method improves the DeepWalk by replacing the random walk with a
new search strategy which combines the properties of BFS and DFS.
• LINE [30]: It defines a loss function based on the first-order and the second-order proximity
between nodes to learn graph representations on large-scale information networks.
• SDNE [34]: This approach employs a Siamese network consisting of two deep autoencoders,
such that both the first-order proximity and the second-order proximity of nodes can be
preserved.

We only compare edge2vec with existing network embedding methods but do not consider the
state-of-the-art methods for any specific tasks. As far as we know, this baseline setting is adopted in
all the network embedding studies [9, 27, 30]. Network embedding methods provide the capability
to deal with lots of analysis tasks on networks. We value the generality of network embedding
methods, and a good network embedding method should outperform other embedding methods in
many tasks.

We obtain the source code of the first three methods from their corresponding projects on Github.
We implement SDNE by ourselves, since the source code is not publicly available.

These embedding methods are all node-based, and thus we need to generate vectors for edges
according to the embedding vectors of its source node and target node. The approaches in [9] are
not appropriate here for the directed social networks, because these approaches will generate the
same vector for edge (s, t) and (t, s) given the embedding vectors of t and s . Thus, we employ a
simple but effective approach which concatenates the embedding vectors of t and s to generate the
vector representation of edge (t, s).
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Fig. 4. Link prediction and social tie direction prediction on Epinions.
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Fig. 5. Link prediction and social tie direction prediction on LiveJournal.

We set the embedding dimension of the four baselines as 64 and that of edge2vec as 128, so that
we can ensure the vector representations generated by all these methods are as of the same length.
The number of samples for DeepWalk, LINE and node2vec are set to the same [9]. Other hyper-
parameters of baselines are set according to the corresponding papers, e.g., p and q for node2vec
are learned by a grid search over {0.25, 0.5, 1, 2, 4}. For edge2vec, we set β = 0.5,p = 10, λ = 5
through experience and previous work [30, 34]. The optimal values of α and k is discovered by a
grid search with cross-validation on the training set, and we will discuss them in Section 5.6.

The structures of the deep autoencoder in edge2vec for different data sets are shown in Table 2.
For example, 6,496-1,024-128 means a two-layer autoencoder, the input and output numbers of the
first layer are 6,496 and 1,024, and those of the second layer are 1,024 and 128. It is worth noting
that the input number for the first layer is always twice of the node number, since the length of
neighborhood vectors is twice of the node number.
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5.2 Link prediction
Our first task is link prediction, a classical problem for social networks. The aim of link prediction
problem is to predict whether a given edge which does not exist will appear in the future.
We use a similar preprocessing step in [9], which first employs the graph embedding method

in link prediction task. We first remove 20% edges from the original network randomly while the
connectivity of the residual network is ensured. The edges in the residual network are treated as
positive samples in the training set, and the removal edges are treated as positive samples in the
test set. We sample node pairs that are not connected in the residual network as negative training
samples, and node pairs that are not connected in the origin network as negative test samples.
Negative samples in the training/test set are both with the same number of the positive ones in the
corresponding set.

In this task, we introduce a specific baseline.
• DeepEdge [1]: It is a node-based embedding method trained for link prediction task. It learns
embedding vectors for nodes and an edge function for edges. The edge function maps a node
pair to a real value to present an edge.

This baseline is not used in following tasks because its edge function is trained for link prediction
specifically. We obtain its source code from Github.

For edge2vec as well as baselines except for DeepEdge, we first learn the embedding vectors for
edges, and then train a logistic regression classifier with different percentages of the training set.
For DeepEdge, we treat it as an end-to-end link prediction model as in [1], and thus it uses all the
samples of the training set. The performances of different methods in this task is measured with
the Area Under the ROC Curve (AUC) metric on the test set.
Please note that we only compare edge2vec with embedding-based link prediction methods,

since the experimental results in [1, 9] show that the link prediction methods based on heuristic
scores always achieve worse performance than embedding-based link prediction methods.

The results are shown in Figures 4(a), 5(a), 6(a) and 7(a) (DeepEdge can be only conducted with
100% training set, so we draw a line with the result corresponding to 100% percentage in each
figure to show its performance). We can observe that edge2vec outperforms all the baselines in all
the unsigned networks significantly. This is because it can preserve both the global and the local
proximity of edges well, and baselines only preserve the proximity of nodes. DeepEdge is always
the second-best, since it learns an edge function specified for link prediction task. As we discussed,
it represents edges through the node vectors and the edge function. The results show that our
strategy that represents edges with vectors is more effective. Node2vec outperforms DeepWalk,
due to its improvement on the search strategy.

There is an interesting fact that the performance of all the methods, except for DeepEdge which
is only conducted with 100% training set, does not get better significantly with the increase of
training data. We know that this experimental task consists of two parts: The unsupervised part,
i.e., the embedding model, learns how to transform edges to vectors from the network of 80% of the
edges, where the supervised part learns to classify edges based on the remaining 20%. It is obvious
that the proportion of training data used in the supervised part could not affect the unsupervised
part, and thus we find that the final performance is mainly determined by the unsupervised part.

5.3 Social tie direction prediction
The study on the social tie direction is novel and interesting [46]. Zhang et. al. argue that there
exists directionality information hidden in undirected social networks, and propose a method to
recover the directions of social ties in a given undirected social networks. In our experiments, we
modify this problem to a supervised learning problem. Supposing the directions of a certain number
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Fig. 6. Link prediction and social tie direction prediction on Slashdot.
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Fig. 7. Link prediction and social tie direction prediction on Tencent.

of social ties are unknown in a directed social network, we aim to predict the directions of them
with the network structure information.

First, we hide the directions of the social network to generate an undirected network, and train
the graph embedding models on the undirected network. Next, we select a various amount of edges
with their directionality information as training data, treat the remaining edges as the test set, and
transform them into the low-dimensional space through the graph embedding models. Last, we
train a logistic regression classifier on the training set, and measure its performance on the test set
with the metric of accuracy.

Figures 4(b), 5(b), 6(b) and 7(b) show the experimental result. Edge2vec is also the best embedding
algorithm in this task. The relationship between the performance of DeepWalk and node2vec
remains the same as that in the link prediction task. However, the performance of LINE is unstable
and varies on different data sets. We think the reason is the different sampling approach used by
LINE and DeepWalk/node2vec.
We can also observe that the proportion of training data matters little for the similar reason in

the link prediction experiment.
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Fig. 8. Social tie sign prediction.

5.4 Social tie sign prediction
Social tie sign prediction problem [19] is one of the studies on signed social networks. Different
from normal (unsigned) social networks, social ties in signed social network can be either positive
or negative. Usually, a positive tie means trust or approval, while a negative one indicates dislike
or disapproval.
Like the experiments in previous subsections, we first embed the networks with different ap-

proaches and obtain the representation vectors for all the edges. Next, we follow the step in [43] to
create a balanced data set for each signed network, since the number of positive edges is much
higher than that of negative edges in each network. We randomly sample a positive edge for
each negative edge so that the number of positive and negative edges is equal. Then we train a
logistic regression classifier on each data set and measure the embedding result based the prediction
accuracy.

In this task, a non-embedding state-of-the-art sign prediction method is introduced as a baseline.

• LR-SIG [6]: It is a global method which utilizes a low rank model of signed networks to solve
the sign prediction problem. By using a gradient based matrix factorization approach and a
sigmoid loss function, it completes the adjacency matrix efficiently with high-precision.

Figure 8 shows the experimental results on Epinions-sign and Wikipedia. Edge2vec outperforms
all the embedding baselines, which is the same as the results in previous subsections. However,
node2vec performs worse than DeepWalk in this experiment. For the non-embedding baseline
LR-SIG, Edge2vec is always better than it on Epinions-sign. On Wikipedia, Edge2vec outperforms
LR-SIG when percentage of training data is small (0.2 and 0.4), and is slightly worse than it when
the percentage gets larger (0.6 and 0.8). These results demonstrate that Edge2vec is very good at
the task of sign prediction.

We can find that in this experiment, for all the embedding methods the accuracy of classification
is still relatively stable as the amount of training data increases, just like the experiments in the
previous two subsections. Thus, in all the analysis tasks we study in this paper, the quality of
embedding methods is the key factor. It implies that when we want to analyze the edges of a given
social network (including link prediction and edge classification) through edge embeddings, the
help of good embedding methods (e.g. edge2vec) is much greater than that of more labeled data.
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Fig. 9. Edge proximity preservation.

The result of the above three analysis tasks shows that the edge-based graph embedding method
is really necessary for the tasks on edges in social networks. For node-based graph embedding
vectors, the properties of an edge cannot be described completely only by the embedding vectors
of the source/target node.

5.5 Edge proximity preservation
In this subsection, we quantitatively study howmuch of the global/local edge proximity is preserved
after embedding with different approaches. The experiments in this subsection are conducted on
the two signed data sets, i.e., Epinions-sign and Wikipedia.

5.5.1 The local edge proximity preservation. We first look at the local edge proximity. According to
Definition 2, the local edge proximity between two edges is 1 if they share common source/target
node, otherwise it is 0. For both of the two networks, we first sample 10, 000 positive edge pairs
(between which the local edge proximity is 1) and 10, 000 negative edge pairs (between which the
local edge proximity is 0). Then we embed the two networks with different embedding approaches
and obtain the embedding vectors for all the edges in the 20, 000 edge pairs. Next, for each edge
pair, we define the proximity between the two edges after embedding as the cosine similarity of
their embedding vectors:

proximity(ea, eb ) = cosine-similarity( ®ea, ®eb ) =
®ea · ®eb
| ®ea | · | ®eb |

. (15)

Finally, we calculate the AUC metric on all sampled edge pairs with their labels (true local edge
proximity, i.e., 0 or 1) and their scores (proximity defined on the cosine similarity of edge embed-
dings). A higher AUC value means the corresponding embedding method preserves the local edge
proximity better.
Figure 9(a) demonstrates that the AUC values corresponding to our method edge2vec are the

highest on both Epinions-sign and Wikipedia. However, the other four methods perform not as
well in this experiment. Thus, we think the result verifies the advantage of edge2vec to preserve
the local edge proximity.

5.5.2 The global edge proximity preservation. For the global edge proximity, we also sample 10, 000
edge pairs for each data sets, but without any limitations. For each edge pair, we calculate its global
edge proximity according to Definition 3 with 2-step neighborhood vector and cosine similarity,
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Fig. 10. The effect of parameter k .

and we calculate its proximity after embedding with Eq. 15. Then we get two ranks w.r.t. the edge
pairs according to their global edge proximity and proximity after embedding, respectively. We use
Kendall rank correlation coefficient [14] τ to measure the similarity of the two ranks:

τ =
nc − nd

n(n − 1)/2
, (16)

where nc is the number of concordant pairs, nd is the number of discordant pairs, and n is the
number of elements in the two ranks. Concordant (discordant) pair is the ordered pair of elements,
which has the same (opposite) order in both ranks. The value of τ is between -1 and 1, and the
higher τ is, the more similar the two ranks are. We would like the coefficient τ of the two ranks of
the edge pairs be high, which means the global edge proximity is preserved well.
The experimental result shown in Figure 9(b) shows that the value of τ w.r.t. edge2vec is

significantly higher than those w.r.t. other embedding approaches, especially on the Wikipedia
data set (the τ value w.r.t. edge2vec is more than 0.4 while the τ values w.r.t. some baselines are
below 0.1).

We can see that edge2vec can preserve both the local and global edge proximity better than the
baseline approaches. We think the essential reason is that edge2vec is designed for preserving the
edge proximity with the help of its deep neural network, but others are proposed for embedding
nodes and do not consider the edge proximity preservation at all.

5.6 Parameter sensitivity
In this subsection, we discuss the effect of two important parameters in edge2vec, i.e., k and α .
We evaluate how these two parameters affect the results for link prediction and social tie sign
prediction tasks.

5.6.1 The maximum length corresponding to calculating neighborhood relationships. k is the maxi-
mum length of steps when we calculate the neighborhood vectors, which are able to capture the
global structure information of a given edge. A larger k value means that more global structure
information is captured by the neighborhood vectors. Figure 10(a) shows that in the link prediction
task on the four unsigned data sets, the performance of edge2vec gets better with the increase
of the k value when k <= 3, and when the value of k increases to 4, its performance becomes
worse. The results of the social tie sign prediction task on the two signed network (Figure 10(b)) are
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Fig. 11. The effect of parameter α .

similar with a small difference, i.e. the inflection point appears when k = 2. It is because that when
the value of k is too large, the sparsity of neighborhood vectors is broken and some interference
information is introduced.

5.6.2 The weights of local and global proximity. The parameter α ∈ [0, 1] balances the weights of
the global and the local proximity in Eq. 11. When α = 0, only the local proximity is considered.
The global proximity affects more on the embedding result with the increase of α . When the α
value reaches 1, edge2vec totally relies on the global proximity, and it equals to an autoencoder
model without negative sampling. Figure 11 shows how the value of α affects the performance.
When α = 0 or 1, the result is relatively poor. If both the global proximity and the local proximity
are taken into consideration, especially when α = 0.6 or 0.8 in Figure 11(a) and α = 0.2 in Figure
11(b), we can see the performance is much better. It demonstrates that both the global proximity
and the local proximity in edge2vec are effective.

6 CONCLUSION AND FUTUREWORK
From the actual demand of social network analysis, we propose a novel graph embedding method
called edge2vec. It can embed a social network into a low-dimensional space through mapping
the edges in the network to representation vectors. We combine the deep autoencoder model and
the Skip-gram model together in our proposed method. edge2vec is able to preserve the global
and the local structure information of a social network. The experimental results show that the
representation vectors for edges obtained from edge2vec are much better than those obtained
from the existing node-based embedding methods in an indirect way.

This paper is the first step of edge-based graph embedding study, and we can see many directions
for future work. (1) One is to incorporate content information into edge2vec to improve the
embedding result. Since the content information varies on different social networks, a general
approach needs to be designed carefully. (2) Likemost existing graph embeddingmethods, edge2vec
is an unsupervised model. Thus, in supervised learning tasks for edges, e.g. social tie sign prediction,
the label information is only used in the classification period but not in the embedding period. We
can study the supervised variant of edge2vec, which is able to utilize the label information of edges
when embedding the network. (3) As the time complexity of edge2vec is high duo to the deep
autoencoder, we will try to improve it to scale at large networks with local/global edge proximity
preserved. (4) Network analysis for a specific task (e.g. link prediction) based on edge embedding is
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promising. We will study how to embed edges to get the best performance in a specific task but not
for general purposes.
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